966 resultados para SINGLE-CELL ASSAY
Resumo:
Development of continuous shrimp cell lines for effective investigation on shrimp viruses remains elusive with an arduous history of over 25 years. Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. Though improved growth and longevity of shrimp cells in vitro could be achieved by using modified growth media this did not make any leap to spontaneous transformation; probably due to the fact that shrimp cells inhibited neoplastic transformations. Oncogenic induction and immortalization are considered as the possible ways, and an exclusive medium for shrimp cell culture and an appropriate mode of transformation are crucial. In this review status of shrimp cell line development and its future orientation are discussed
Resumo:
This work presents detailed numerical calculations of the dielectrophoretic force in octupolar traps designed for single-cell trapping. A trap with eight planar electrodes is studied for spherical and ellipsoidal particles using an indirect implementation of the boundary element method (BEM). Multipolar approximations of orders one to three are compared with the full Maxwell stress tensor (MST) calculation of the electrical force on spherical particles. Ellipsoidal particles are also studied, but in their case only the dipolar approximation is available for comparison with the MST solution. The results show that the full MST calculation is only required in the study of non-spherical particles.
Resumo:
Los solventes orgánicos son sustancias químicas que por sus propiedades físico-químicas son fácilmente inhalados o absorbidos por la piel, pueden causar daños de diversa índole en la salud. En Colombia existen normas que contemplan las medidas de protección, sin embargo persiste la informalidad en el sector de pintores de autos, por lo cual los trabajadores expuestos, a largo plazo pueden ver afectada su salud. En este estudio se analizó la relación entre individuos expuestos laboralmente a los solventes orgánicos versus no expuestos con respecto a la longitud de sus telómeros y formación de fragilidades. Se emplearon muestras de sangre extraídas por venopunción, recolectada en dos tubos: uno con Heparina, destinado al cultivo de linfocitos, para obtener cromosomas metafásicos y evaluar en ellos la presencia de fragilidades; el otro tubo con EDTA, fue empleado para la extracción de ADN y se utilizó para obtener los valores de longitud telomérica mediante la técnica de PCR cuantitativa. Los análisis estadísticos se realizaron aplicando la prueba de rangos de Wilcoxon, en el caso de la presencia de fragilidades se analizó la razón No.Fragilidades/No.Metafases, aplicando el método de Wilcoxon se encontró que existe diferencia estadísticamente significativa entre expuestos y no expuestos (p = 0,036), en donde los expuestos presentan mayor frecuencia de fragilidades. Por otra parte el valor relativo de longitud telomérica del grupo de expuestos fue mayor que el observado en el grupo de no expuestos, esta diferencia fue estadísticamente significativa (Wilcoxon, p = 0.002).
Resumo:
Incubation with 5-n-alkylresorcinols (chain lengths C15:0, C17:0, C19:0, C21:0, and C23:0) increased the self-protection capacity of HT29 human colon cancer cells against DNA damage induced by hydrogen peroxide and genotoxic fecal water samples using comet assay (single-cell gel electrophoresis assay). The alkylresorcinols did not exert potent antioxidant activity in the FRAP (ferric reduction ability of plasma) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical assays. However they were able to significantly inhibit copper-mediated oxidation of human LDL (low-density lipoprotein) in vitro, and pentadecylresorcinol at 25 micromol/L increased lag time by 65 min. The results show that alkylresorcinols have antigenotoxic and antioxidant activity under in vitro conditions.
Resumo:
The traditional Mediterranean diet is thought to represent a healthy lifestyle; especially given the incidence of several cancers including colorectal cancer is lower in Mediterranean countries compared to Northern Europe. Olive oil, a central component of the Mediterranean diet, is believed to beneficially affect numerous biological processes. We used phenols extracted from virgin olive oil on a series of in vitro systems that model important stages of colon carcinogenesis. The effect the extract on DNA damage induced by hydrogen peroxide was measured in HT29 cells using single cell microgel-electrophoresis. A significant anti-genotoxic linear trend (p=0.011) was observed when HT29 cells were pre-incubated with olive oil phenols (0, 5, 10, 25, 50, 75, 100 microg/ml) for 24 hr, then challenged with hydrogen peroxide. The olive oil phenols (50, 100 microg/ml) significantly (p=0.004, p=0.002) improved barrier function of CACO2 cells after 48 hr as measured by trans-epithelial resistance. Significant inhibition of HT115 invasion (p<0.01) was observed at olive oil phenols concentrations of 25, 50, 75, 100 microg/ml using the matrigel invasion assay. No effect was observed on HT115 viability over the concentration range 0, 25, 50 75, 100 microg/ml after 24 hr, although 75 and 100 microg/ml olive oil phenols significantly inhibited HT115 cell attachment (p=0.011, p=0.006). Olive oil phenols had no significant effect on metastasis-related gene expression in HT115 cells. We have demonstrated that phenols extracted from virgin olive oil are capable of inhibiting several stages in colon carcinogenesis in vitro.
Resumo:
Vegetable consumption is associated with a reduced risk of colorectal cancer, which is the second most common cancer after lung/breast cancer within Europe. Some putative protective phytochemicals are found in higher amounts in young sprouts than in mature plants. The effect of an extract of mixed cruciferous and legume sprouts on DNA damage induced by H(2)O(2) was measured in HT29 cells using single cell microgelelectrophoresis (comet). Significant antigenotoxic effect (P < or = 0.05) was observed when HT29 cells were pre-incubated with the extract (100 and 200 microL/mL) for 24 hours and then challenged with H(2)O(2). A parallel design intervention study was carried out on 10 male and 10 female healthy adult volunteers (mean age = 25.5 years) fed 113 g of cruciferous and legume sprouts daily for 14 days. The effect of the supplementation was measured on a range of parameters, including DNA damage in lymphocytes (comet), the activity of various detoxifying enzymes (glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), antioxidant status using the ferric reducing ability of plasma assay, plasma antioxidants (uric acid, ascorbic acid, and alpha-tocopherol), blood lipids, plasma levels of lutein, and lycopene. A significant antigenotoxic effect against H(2)O(2)-induced DNA damage was shown in peripheral blood lymphocytes of volunteers who consumed the supplemented diet when compared with the control diet (P = 0.04). No significant induction of detoxifying enzymes was observed during the study, neither were plasma antioxidant levels or activity altered. The results support the theory that consumption of cruciferous vegetables is linked to a reduced risk of cancer via decreased damage to DNA.
Resumo:
Six strains of lactic acid producing bacteria (LAB) were incubated (1 x 10(8)cfu/ml) with genotoxic faecal water from a human subject. HT29 human adenocarcinoma cells were then challenged with the resultant samples and DNA damage measured using the single cell gel electrophoresis (comet) assay. The LAB strains investigated were Bifidobacterium sp. 420, Bifidobacterium Bb12, Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus bulgaricus and Enterococcus faecium. DNA damage was significantly decreased by all bacteria used with the exception of Strep. thermophilus. Bif. Bb12 and Lact. plantarum showed the greatest protective effect against DNA damage. Incubation of faecal water with different concentrations of Bif. Bb12 and Lact. plantarum revealed that the decrease in genotoxicity was related to cell density. Non-viable (heat treated) probiotic cells had no effect on faecal water genotoxicity. In a second study, HT29 cells were cultured in the presence of supernatants of incubations of probiotics with various carbohydrates including known prebiotics; the HT29 cells were then exposed to faecal water. Overall, incubations involving Lact. plantarum with the fructooligosaccharide (FOS)-based prebiotics Inulin, Raftiline, Raftilose and Actilight were the most effective in increasing the cellular resistance to faecal water genotoxicity, whereas fermentations with Elixor (a galactooligosaccharide) and Fibersol (a maltodextrin) were less effective. Substantial reductions in faecal water-induced DNA damage were also seen with supernatants from incubation of prebiotics with Bif. Bb12. The supernatant of fermentations involving Ent. faecium and Bif. sp. 420 generally had less potent effects on genotoxicity although some reductions with Raftiline and Elixor fermentations were apparent.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.
Resumo:
The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO(2) start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H(2)/CO, the formation of CO(2) is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Aim: The aim of this work was to investigate the hypothesis that catechol and 3MC inhibit FADH2-linked basal respiration in mitochondria isolated from rat liver and brain homogenates. Moreover, catechol ability to induce DNA damage in rat brain cells through the comet assay (alkaline single-cell gel electrophoresis assay) was also observed. Methods: Two different catechols were evaluated: pirocatechol (derived from benzene) and 3-methylcatechol (derived from toluene); rat liver and brain homogenates were incubated with 1mM catechol at pH 7.4 for up to 30 minutes. After that, mitochondrial fractions were isolated by differential centrifugation. Basal oxygen uptake was measured using a Clark-type electrode after the addition of 10 mM sodium succinate for a period of 12 minutes. In additional experiments, rat brain cells were treated with 1, 5 and 10mM pirocatechol for up to 20 minutes at 37º C, and submitted to electrophoresis. Results: Catechols (pirocatechol and 3methylcatechol) induced a time-dependent partial inhibition of FADH2-linked basal mitochondrial respiration. Indeed, pirocatechol was able to produce a dosedependent DNA oxidative damage in rat brain cells by 2 and 4 injury levels. These results suggest that reactive oxygen species generated by the oxidation of catechols, induced an impairment on mitochondrial respiration and a DNA damage, which might be related to their citotoxicity. Conclusion: Catechols produced an inhibition of basal respiration associated to FADH2 in isolated liver and brain mitochondria; 3-methylcatechol, at the same concentration, produced similar toxicity in the mitochondrial model. Indeed, pirocatechol induced a DNA damage in rat brain cells, mainly observed in comets formation and consequent DNA degradation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)