999 resultados para SEMICONDUCTOR INTERFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tension-softening parameters for different concrete-concrete interfaces are determined using the bimaterial cracked hinge model. Beams of different sizes having a jointed interface between two different strengths of concrete are tested under three-point bending (TPB). The load versus crack mouth opening displacement (CMOD) results are used to obtain the stress-crack opening relation through an inverse analysis. In addition, the fracture energy, tensile strength, and modulus of elasticity are also computed from the inverse analysis. The fracture properties are used in the nonlinear fracture mechanics analysis of a concrete patch-repaired beam to determine its load-carrying capacity when repaired with concrete of different strengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Mg doping in ZnO is investigated through structural, electrical, and optical properties. Zn1−xMgxO (0<×<0.3) thin films were deposited on Si (100) and corning glass substrates using multimagnetron sputtering. Investigations on the structural properties of the films revealed that the increase in Mg concentration resulted in phase evolution from hexagonal to cubic phase. The temperature dependent study of dielectric constant at different frequencies exhibited a dielectric anomaly at 110 °C. The Zn0.7Mg0.3O thin films exhibited a well-defined polarization hysteresis loop with a remnant polarization of 0.2 μC/cm2 and coercive field of 8 kV/cm at room temperature. An increase in the band gap with an increase in Mg content was observed in the range of 3.3–3.8 eV for x = 0–0.3. The average transmittance of the films was higher than 90% in the wavelength region λ = 400–900 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral characteristics of a diode laser are significantly affected due to interference caused between the laser diode output and the optical feedback in the external-cavity. This optical feedback effect is of practical use for linewidth reduction, tuning or for sensing applications. A sensor based on this effect is attractive due to its simplicity, low cost and compactness. This optical sensor has been used so far, in different configuration such as for sensing displacement induced by different parameters. In this paper we report a compact optical sensor consisting of a semiconductor laser coupled to an external cavity. Theoretical analysis of the self- mixing interference for optical sensing applications is given for moderate optical feedback case. A comparison is made with our experimental observations. Experimental results are in good agreement with the simulated power modulation based on self-mixing interference theory. Displacements as small as 10-4 nm have been measured using this sensor. The developed sensor showed a fringe sensitivity of one fringe per 400nm displacement for reflector distance of around 10cms. The sensor has also been tested for magnetic field and temperature induced displacement measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of C alpha atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capping-free and linker-free nanostructures/hybrids possess superior properties due to the presence of pristine surfaces and interfaces. In this review, various methods for synthesizing pristine nanomaterials are presented along with the general principles involved in their morphology control. In wet chemical synthesis, the interplay between various reaction parameters results in diverse morphology. The fundamental principles behind the evolution of morphology including nanoporous aggregates of metals and other inorganic materials, 2D nanocrystals of metals is elucidated by capping-free methods in aqueous medium. In addition, strategies leading to the attachment of bare noble metal nanoparticles to functional oxide supports/reduced graphene oxide has been demonstrated which can serve as a simple solution for obtaining thermally stable and efficient supported catalysts with free surfaces. Solution based synthesis of linker-free oxide-semiconductor hybrids and capping-free metal nanowires on substrates are also discussed in this context with ZnO/CdS and ultrathin Au nanowires as examples. A simple and rapid microwave-assisted method is highlighted for obtaining such hybrids which can be employed for high-yield production of similar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the effective electron mass (EEM) in Nano wires (NWs) of nonlinear optical materials on the basis of newly formulated electron dispersion relation by considering all types of anisotropies of the energy band constants within the framework of k . p formalism. The results for NWs of III-V, ternary and quaternary semiconductors form special cases of our generalized analysis. We have also investigated the EEM in NWs of Bi, IV-VI, stressed Kane type materials, Ge, GaSb and Bi2Te3 by formulating the appropriate 1D dispersion law in each case by considering the influence of energy band constants in the respective cases. It has been found that the 1D EEM in nonlinear optical materials depend on the size quantum numbers and Fermi energy due to the anisotropic spin orbit splitting constant and the crystal field splitting respectively. The 1D EEM is Bi, IV-VI, stressed Kane type semiconductors and Ge also depends on both the Fermi energy and the size quantum numbers which are the characteristic features of such NWs. The EEM increases with increase in concentration and decreasing film thickness and for ternary and quaternary compounds the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers < 10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction similar to 13% and metal layer thickness similar to 30 nm, which give maximum crack resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to (die. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.