889 resultados para Room-temperature ferromagnetic properties
Resumo:
Highly conductive and transparent thin films of amorphous zinc indium tin oxide are prepared at room temperature by co-sputtering of zinc 10 oxide and indium tin oxide. Cationic contents in the films are varied by adjusting the power to the sputtering targets. Optical transmission study of 11 films showed an average transmission greater than 85% across the visible region. Maximum conductivity of 6×102 S cm−1 is obtained for Zn/In/ 12 Sn atomic ratio 0.4/0.4/0.2 in the film. Hall mobility strongly depends on carrier concentration and maximum mobility obtained is 18 cm2 V−1 s−1 13 at a carrier concentration of 2.1×1020 cm−3. Optical band gap of films varied from 3.44 eV to 3 eV with the increase of zinc content in the film 14 while the refractive index of the films at 600 nm is about 2.0.
Resumo:
Poly(o-toluidine) (PoT) and poly(o-toluidine co aniline) were prepared by using ammonium persulfate initiator, in the presence of 1M HCI. It was dried under different conditions: room temperature drying (48 h), oven drying (at 50°C for 12 h), or vacuum drying (under vacuum, at room temperature for 16 h). The dielectric properties, such as dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, loss tangent, etc., were studied at microwave frequencies. A cavity perturbation technique was used for the study. The dielectric properties were found to be related to the frequency and drying conditions. Also, the copolymer showed better properties compared to PoT alone.
Resumo:
ABSTRACT: Zinc salts of ethyl, isopropyl, and butyl xanthates were prepared in the laboratory. They were purified by reprecipitation and were characterized by IR, NMR, and thermogravimetric analysis techniques. The melting points were also determined. The rubber compounds with different xanthate accelerators were cured at temperatures from 30 to 150°C. The sheets were molded and properties such as tensile strength, tear strength, crosslink density, elongation at break, and modulus at 300% elongation were evaluated. The properties showed that all three xanthate accelerators are effective for room temperature curing.
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
Iron and mixed iron aluminium pillared montrnorillonites prepared by partial hydrolysis method were subjected to room temperature exchange with transition metals of the first series. The resulting materials were characterised by different spectroscopic techniques and surface area measurements. About 1-3% transition metals were incorporated into the porous network. The structural stability of the porous network was not affected by exchange. XRD and AI NMR spectroscopy evidenced the presence of iron substituted Al13 like polymers in FeAl pillared systems. Acidity and basicity benefited much as a result of metal exchange. Acidity and basicity were quantified by model reactions, viz., cumene cracking and cyclohexanol decomposition respectively. The presence of basic sites in otherwise acidic pillared clays, though diminutive in amount can be of much importance in acid base catalysed reactions.
Resumo:
This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.
Resumo:
This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample
Resumo:
This thesis consists of a study of the effect of electrode films and overlayer films on the electrical properties of certain metal films. The films have been prepared on glass substrates by thermal evapouration in a vaccum 10 terr. The properties of Al films on Ag, Al,Au and Cu films on In electrodes ,and Bi/Ag bilayer films have been studied. The influence of annealing electrodes at higher temperature on the electrical properties of metal films has also been investigated. Further the effect of varying layer thickness in the bilayer films ,both annealed at higher temperature and annealed at room temperature have been examined.
Resumo:
The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.
Resumo:
The work reported in this thesis is the preparation, and the structural, electrical and optical properties of reactively evaporated lead sulphide and tin telluride thin films. The three temperature method had been used for the preparation of these semiconductor thin films. In this preparation technique constituent elements are evaporated from separate sources with the substrate kept at a particular temperature. when one of the constituent element is a gas near room temperature, the method is often called reactive evaporation. It has been found for many materials that a stoichiometric interval exists with a limited range of flux and substrate temperature. Usually this technique is used for the preparation of thin films of high melting point compounds or of materials which decompose during evaporation. Tin telluride and lead sulphide are neither high melting point materials nor do they decompose on melting. But even than reactive evaporation offers the possibility of changing the ratios of the flux of the constituent elements within a wide range and studying its effect on the properties of the films
Resumo:
The results of the investigation of the magnetic and structural properties of the alloy system Fe0.75–xSi0.25Sbx, where x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 synthesized by mechanical alloying followed by heat treatment are described. The x-ray diffraction reveals that all samples crystallize in the DO3-type cubic phase structure. Substituting Fe by Sb led to a de-crease in the lattice constant and the unit cell volume. The magnetic properties are investigated by vibrating sample magnetometer and show that all the samples are ferromagnetically ordered at room temperature. The Curie temperature is found to decrease linearly from (850 ± 5) K for the parent alloy to (620 ± 5) K for the alloyith x = 0.25. The satura-tion magnetizations at room temperature and at 100 K are found to decrease with increasing the antimony concentration. The above results indicate that Sb dissolves in the cubic structure of this alloy system.
Resumo:
The present thesis work focuses on hole doped lanthanum manganites and their thin film forms. Hole doped lanthanum manganites with higher substitutions of sodium are seldom reported in literature. Such high sodium substituted lanthanum manganites are synthesized and a detailed investigation on their structural and magnetic properties is carried out. Magnetic nature of these materials near room temperature is investigated explicitly. Magneto caloric application potential of these materials are also investigated. After a thorough investigation of the bulk samples, thin films of the bulk counterparts are also investigated. A magnetoelectric composite with ferroelectric and ferromagnetic components is developed using pulsed laser deposition and the variation in the magnetic and electric properties are investigated. It is established that such a composite could be realized as a potential field effect device. The central theme of this thesis is also on manganites and is with the twin objectives of a material study leading to the demonstration of a device. This is taken up for investigation. Sincere efforts are made to synthesize phase pure compounds. Their structural evaluation, compositional verification and evaluation of ferroelectric and ferromagnetic properties are also taken up. Thus the focus of this investigation is related to the investigation of a magnetoelectric and magnetocaloric application potentials of doped lanthanum manganites with sodium substitution. Bulk samples of sodium substituted lanthanum manganites. Bulk samples of sodium substituted lanthanum manganites with Na substitution ranging from 50 percent to 90 percent were synthesized using a modified citrate gel method and were found to be orthorhombic in structure belonging to a pbnm spacegroup. The variation in lattice parameters and unit cell volume with sodium concentration were also dealt with. Magnetic measurements revealed that magnetization decreased with increase in sodium concentrations.
Resumo:
El treball de tesi s'emmarca dins del camp de la bioinorgànica, disciplina que estudia les propietats estructurals i de reactivitat dels centres actius dels enzims, servint-se de models síntètics de baix pes molecular per tal d'intentar reproduïr la reactivitat presentada per l'enzim i conèixer els mecanismes de reacció a nivell molecular que tenen lloc en els processos biològics.1 Més concretament el treball posa especial èmfasi en els processos d'activació d'oxigen molecular que tenen lloc en les metaloproteïnes de Coure del Tipus 3, com són l'hemocianina i la tirosinasa, ambdues presentant un complex dinuclear de Cu(I)) en el centre actiu de la forma reduïda, capaç d'activar l'O2 cap a espècies de tipus peròxid.2 Un altre camp d'interès ha estat l'estudi dels processos d'activació d'enllaços C-H no activats en hidrocarburs, tant per la seva importàcia a nivell industrial com per comprendre els mecanismes intrínsecs d'aquesta activació a través de metalls de trancisió.3,4 Durant el treball de tesi presentat s'ha desenvolupat la síntesi de nous complexes de Coure(I), Coure(II) y Cu(III) utilitzant lligands macrocíclics de tipus triaza i hexaaza, i s'han estudiat la seves propietats estructurals així com la seva reactivitat. La reacció dels lligands triazacíclics H32m, H2Me33m i H33m amb sals de coure(II) dóna lloc a una reacció de desproporció de Cu(II) per obtenir-se en quantitats equimolars un complex organometàl·lic de Cu(III) i un complex de Cu(I). La caracterizació estructural exhaustiva dels complexes del tipus aryl-Cu(III) evidencia la formació d'un enllaç organometàl·lic entre l'àtom de Cu(III) i el carboni més próxim de l'anell aromàtic del lligand. Aquesta reacció, a més de representar una nova forma de desproporció en la química del Cu, suposa l'activació d'un enllaç C-H aromàtic a temperatura ambient que, mitjançant l'estudi cinètic d'aquesta desproporció per espectroscòpia UV-Vis, dels càlcul de l'efecte cinètic isotòpic utilitzant el lligand deuterat en el C-H de l'anell, juntament amb el recolzament teòrics dels càlculs DFT per a la optimització de geometries d'intermedis de reacció, ens permeten proposar un mecanisme de reacció pel nostre sistema, on l'activació de l'enllaç C-H aromàtic transcorre per la formació d'un enllaç de tipus agòstic C-H ? Cu(II),5 seguit de la desprotonació del C-H aromàtic per acció d'una base i posterior transferència electrònica per obtenir el complex organometàlic de Cu(III) i el complex de de Cu(I). En quant a la reactivitat d'aquests complexes organometàl·lics aryl-Cu(III) s'ha observat que una base en medi aquós causa la inestabilitat d'aquests compostos, evolucionant cap a la inserció d'un àtom d'oxigen sobre la posició activada de l'anell aromàtic, per a donar lloc a un complex dinuclear de Cu(II) amb dos grups fenoxo actuant de pont entre els àtoms metàl·lics. La reacció transcorre per un intermedi colorejat, caracteritzat com el complex ayl-Cu(III) monodesprotonat en una de les seves amines benzíliques, els quals s'observen igualment en la reacció dels correponents complexos de Cu(I) amb oxigen molecular (O2). És en els nostres sistemes en els quals es descriu per primera vegada la participació d'intermedis organometàl·lics Cu(III)-C en processos d'hidroxilació aromàtica, tals com el desenvolupat per l'enzim tirosinasa o per alguns dels seus models químics de síntesi.6,7,8 S'han estudiat les propietats magnètiques dels quatre bis(fenoxo)complexes de Cu(II) descrits, obtenint-se uns acoplaments de tipus antiferromagnètic o ferromagnètic de diversa magnitud, depenent del solapament orbitalari a l'enllaç Cu-O, a través del qual es produeix el superintercanvi. Nous complexos de Cu(I) sintetitzats amb lligands hexaazamacrocíclics han estat estudiats, i posant especial èmfasi a la seva reactivitat respecta a l'activació d'oxigen molecular (O2). S'ha observat una reactivitat diferenciada segons la concentració de complex de Cu(I) utilitzada, de manera que a altes concentracions s'obté un carbonato complex tetranuclear de Cu(II) per fixació de CO2 atmosfèric, mentre que a baixes concentracions s'observa la hidroxilació aromàtica intramolecular d'un dels anells benzílics del lligand, reacció que presumiblement transcorre per atac electrofílic d'un peroxo complex intermedi sobre el sistema ? de l'anell.6 Els resultats obtinguts en aquest treball ens mostren la facilitat per activar enllaços C-H aromàtics per metalls de transició de la primera sèrie (Cu, Ni) quan aquests estan suficientment pròxims a l'enllaç C-H, en unes condicions de reacció molt suaus (1atm., temperatura ambient). Els nous complexos organometàl·lics Aryl-Cu(III) són el producte d'una nova reacció de desproporció de Cu(II), així com un posició aromàtica activada que podria ser el punt de partida per l'estudi de funcionalització selectiva d'aquests grups aromàtics.
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)