905 resultados para Robot sensing systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 2001 the School of Information Technology and Electrical Engineering (ITEE) at the University of Queensland has been involved in RoboCupJunior activities aimed at providing children with the Robot building and programming knowledge they need to succeed in RoboCupJunior competitions. These activities include robotics workshops, the organization of the State-wide RoboCupJunior competition, and consultation on all matters robotic with schools and government organizations. The activities initiated by ITEE have succeeded in providing children with the scaffolding necessary to become competent, independent robot builders and programmers. Results from state, national and international competitions suggest that many of the children who participate in the activities supported by ITEE are subsequently able to purpose- build robots to effectively compete in RoboCupJunior competitions. As a result of the scaffolding received within workshops children are able to think deeply and creatively about their designs, and to critique their designs in order to make the best possible creation in an effort to win.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robots action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robots navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a walking gait for a humanoid robot with a distributed control system. The motion for the robot is calculated in real time on a central controller, and sent over CAN bus to the distributed control system. The distributed control system loosely follows the motion patterns from the central controller, while also acting to maintain stability and balance. There is no global feedback control system; the system maintains its balance by the interaction between central gait and soft control of the actuators. The paper illustrates a straight line walking gait and shows the interaction between gait generation and the control system. The analysis of the data shows that successful walking can be achieved without maintaining strict local joint control, and without explicit global balance coordination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a process for evolving a stable humanoid walking gait that is based around parameterised loci of motion. The parameters of the loci are chosen by an evolutionary process based on the criteria that the robot's ZMP (zero moment point) follows a desirable path. The paper illustrates the evolution of a straight line walking gait. The gait has been tested on a 1.2 m tall humanoid robot (GuRoo). The results, apart form illustrating a successful walk, illustrate the effectiveness of the ZMP path criterion in not only ensuring a stable walk, but also in achieving efficient use of the actuators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a mobile robot to operate autonomously in real-world environments, it must have an effective control system and a navigation system capable of providing robust localization, path planning and path execution. In this paper we describe the work investigating synergies between mapping and control systems. We have integrated development of a control system for navigating mobile robots and a robot SLAM system. The control system is hybrid in nature and tightly coupled with the SLAM system; it uses a combination of high and low level deliberative and reactive control processes to perform obstacle avoidance, exploration, global navigation and recharging, and draws upon the map learning and localization capabilities of the SLAM system. The effectiveness of this hybrid, multi-level approach was evaluated in the context of a delivery robot scenario. Over a period of two weeks the robot performed 1143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), travelled a total distance of more than 40km, and recharged autonomously a total of 23 times. In this paper we describe the combined control and SLAM system and discuss insights gained from its successful application in a real-world context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

-

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a novel two stage approach to object localization and tracking using a network of wireless cameras and a mobile robot. In the first stage, a robot travels through the camera network while updating its position in a global coordinate frame which it broadcasts to the cameras. The cameras use this information, along with image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to track the objects. We present results with a nine node indoor camera network to demonstrate that this approach is feasible and offers acceptable level of accuracy in terms of object locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Participatory sensing enables collection, processing, dissemination and analysis of environmental sensory data by ordinary citizens, through mobile devices. Researchers have recognized the potential of participatory sensing and attempted applying it to many areas. However, participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data quality has become a significant issue. This study proposes using reputation management to classify the gathered data and provide useful information for campaign organizers and data analysts to facilitate their decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.