925 resultados para Rheopherese, akuter Hörsturz, LDL-Apherese, therapierefraktärer Hörsturz, chronischer Hörsturz
Resumo:
Soy-derived phytoestrogen genistein and 17β-estradiol (E2), the principal endogenous estrogen in women, are also potent antioxidants protecting LDL and HDL lipoproteins against oxidation. This protection is enhanced by esterification with fatty acids, resulting in lipophilic molecules that accumulate in lipoproteins or fatty tissues. The aims were to investigate, whether genistein becomes esterified with fatty acids in human plasma accumulating in lipoproteins, and to develop a method for their quantitation; to study the antioxidant activity of different natural and synthetic estrogens in LDL and HDL; and to determine the E2 esters in visceral and subcutaneous fat in late pregnancy and in pre- and postmenopause. Human plasma was incubated with [3H]genistein and its esters were analyzed from lipoprotein fractions. Time-resolved fluoroimmunoassay (TR-FIA) was used to quantitate genistein esters in monkey plasma after subcutaneous and oral administration. The E2 esters in women s serum and adipose tissue were also quantitated using TR-FIA. The antioxidant activity of estrogen derivatives (n=43) on LDL and HDL was assessed by monitoring the copper induced formation of conjugated dienes. Human plasma was shown to produce lipoprotein-bound genistein fatty acid esters, providing a possible explanation for the previously reported increased oxidation resistance of LDL particles during intake of soybean phytoestrogens. Genistein esters were introduced into blood by subcutaneous administration. The antioxidant effect of estrogens on lipoproteins is highly structure-dependent. LDL and HDL were protected against oxidation by many unesterified, yet lipophilic derivatives. The strongest antioxidants had an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups. E2 ester levels were high during late pregnancy. The median concentration of E2 esters in pregnancy serum was 0.42 nmol/l (n=13) and in pre- (n=8) and postmenopause (n=6) 0.07 and 0.06 nmol/l, respectively. In pregnancy visceral fat the concentration of E2 esters was 4.24 nmol/l and in pre- and postmenopause 0.82 and 0.74 nmol/l. The results from subcutaneous fat were similar. In serum and fat during pregnancy, E2 esters constituted about 0.5 and 10% of the free E2. In non-pregnant women most of the E2 in fat was esterified (the ester/free ratio 150 - 490%). In postmenopause, E2 levels in fat highly exceeded those in serum, the majority being esterified. The pathways for fatty acid esterification of steroid hormones are found in organisms ranging from invertebrates to vertebrates. The evolutionary preservation and relative abundance of E2 esters, especially in fat tissue, suggest a biological function, most likely in providing a readily available source of E2. The body s own estrogen reservoir could be used as a source of E2 by pharmacologically regulating the E2 esterification or hydrolysis.
Resumo:
Backround and Purpose The often fatal (in 50-35%) subarachnoid hemorrhage (SAH) caused by saccular cerebral artery aneurysm (SCAA) rupture affects mainly the working aged population. The incidence of SAH is 10-11 / 100 000 in Western countries and twice as high in Finland and Japan. The estimated prevalence of SCAAs is around 2%. Many of those never rupture. Currently there are, however, no diagnostic methods to identify rupture-prone SCAAs from quiescent, (dormant) ones. Finding diagnostic markers for rupture-prone SCAAs is of primary importance since a SCAA rupture has such a sinister outcome, and all current treatment modalities are associated with morbidity and mortality. Also the therapies that prevent SCAA rupture need to be developed to as minimally invasive as possible. Although the clinical risk factors for SCAA rupture have been extensively studied and documented in large patient series, the cellular and molecular mechanisms how these risk factors lead to SCAA wall rupture remain incompletely known. Elucidation of the molecular and cellular pathobiology of the SCAA wall is needed in order to develop i) novel diagnostic tools that could identify rupture-prone SCAAs or patients at risk of SAH, and to ii) develop novel biological therapies that prevent SCAA wall rupture. Materials and Methods In this study, histological samples from unruptured and ruptured SCAAs and plasma samples from SCAA carriers were compared in order to identify structural changes, cell populations, growth factor receptors, or other molecular markers that would associate with SCAA wall rupture. In addition, experimental saccular aneurysm models and experimental models of mechanical vascular injury were used to study the cellular mechanisms of scar formation in the arterial wall, and the adaptation of the arterial wall to increased mechanical stress. Results and Interpretation Inflammation and degeneration of the SCAA wall, namely loss of mural cells and degradation of the wall matrix, were found to associate with rupture. Unruptured SCAA walls had structural resemblance with pads of myointimal hyperplasia or so called neointima that characterizes early atherosclerotic lesions, and is the repair and adaptation mechanism of the arterial wall after injury or increased mechanical stress. As in pads of myointimal hyperplasia elsewhere in the vasculature, oxidated LDL was found in the SCAA walls. Immunity against OxLDL was demonstrated in SAH patients with detection of circulating anti-oxidized LDL antibodies, which were significantly associated with the risk of rupture in patients with solitary SCAAs. Growth factor receptors associated with arterial wall remodeling and angiogenesis were more expressed in ruptured SCAA walls. In experimental saccular aneurysm models, capillary growth, arterial wall remodeling and neointima formation were found. The neointimal cells were shown to originate from the experimental aneurysm wall with minor contribution from the adjacent artery, and a negligible contribution of bone marrow-derived neointimal cells. Since loss of mural cells characterizes ruptured human SCAAs and likely impairs the adaptation and repair mechanism of ruptured or rupture-prone SCAAs, we investigated also the hypothesis that bone marrow-derived or circulating neointimal precursor cells could be used to enhance neointima formation and compensate the impaired repair capacity in ruptured SCAA walls. However, significant contribution of bone marrow cells or circulating mononuclear cells to neointima formation was not found.
Resumo:
Most of the genes in the MHC region are involveed in adaptive and innate immunity, with essential function in inflammatory reactions and in protection against infections. These genes might serve as a candidate region for infection and inflammation associated diseases. CAD is an inflammatory disease. The present set of studies was performed to assess whether the MHC region harbors genetic markers for CAD, and whether these genetic markers explain the CAD risk factors: e.g., C. pneumoniae, periodontitis, and periodontal pathogens. Study I was performed using two separate patient materials and age- and sex-matched healthy controls, categorizing them into two independent studies: the HTx and ACS studies. Both studies consistently showed the HLA-A3– B35– DR1 (35 ancestral haplotype) haplotype as a susceptible MHC genetic marker for CAD. HLA-DR1 alone was associated not only with CAD, but also with CAD risk factor diseases, e.g., diabetes mellitus, and hyperlipidemia. The ACS study further showed the HLA-B*07 and -DRB1*15 -related haplotype as a protective MHC haplotype for CAD. Study II showed that patients with CAD showed signs of chronic C. pneumoniae infection when compared to age- and sex-matched healthy controls. HLA-B*35 or -related haplotypes associated with the C. pneumoniae infection markers. Among these haplotype carriers, males and smokers associated with elevated C. pneumoniae infection markers. Study III showed that CAD patients with periodontitis had elevated serum markers of P. gingivalis and occurrence of the pathogen in saliva. LTA+496C strongly associated with periodontitis, while HLA-DRB1*01 with periodontitis and with the elevated serum antibodies of P. gingivalis. Study IV showed that the increased level of C3/C4 ratio was a new risk factor and was associated with recurrent cardiovascular end-points. The increased C3 and decreased C4 concentrations in serum explained the increased level of the C3/C4 ratio. Both the higher than cut-off value (4.53) and the highest quartile of the C3/C4 ratio were also associated with worst survival, increased end-points, and C4 null alleles. The presence of C4 null alleles associated with decreased serum C4 concentration, and increased C3/C4 ratio. In conclusion, the present studies show that the CAD susceptibility haplotype (HLA-A3− B35− DR1 -related haplotypes, Study I) partially explains the development of CAD in patients possessing several recognized and novel risk factors: diabetes mellitus, increased LDL, smoking, C4B*Q0, C. pneumnoiae, periodontitis, P. gingivalis, and complement C3/C4 ratio (Study II, III, and IV).
Resumo:
Background and aims. Diabetic dyslipidemia is a highly atherogenic triad of increased triglycerides, decreased HDL cholesterol, and small dense LDL. Fibrates have a beneficial effect on diabetic dyslipidemia, and they have reduced cardiovascular events in randomized trials. Fenofibrate has reduced albuminuria and markers of low-grade inflammation and endothelial dysfunction. The present studies were undertaken to characterize the alterations of VLDL and LDL subclasses and to investigate the binding of LDL to arterial wall in type 2 diabetes. Further purpose was to elucidate the effects of fenofibrate on several lipoprotein subclasses, augmentation index (AIx), carotid intima-media thickness (IMT), and renal function. Subjects. 239 type 2 diabetic subjects were recruited among participants of the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes) study at the Helsinki centre. The patients were randomized to fenofibrate (200mg/d) or placebo for 5 years. Additionally, a healthy control group (N = 93) was recruited. Results. VLDL1 triglycerides increased in similar proportion to total triglycerides in type 2 diabetic patients and control subjects. Despite the increase in total apoCIII levels, VLDL apoCIII was decreased in diabetic patients. Enrichment of LDL with apoCIII induced a small increase in binding of LDL to arterial wall proteoglycan. Intrinsic characteristics of diabetic LDL, rather than levels of apoCIII, were responsible for increased proteoglycan binding of diabetic LDL with high apoCIII. Fenofibrate reduced triglycerides, increased LDL size, and shifted HDL subclasses towards smaller particles with no change in levels of HDL cholesterol. High levels of homocysteine were associated with lower increase of HDL cholesterol and apoA-I during fenofibrate treatment. Long-term fenofibrate treatment did not improve IMT, AIx, inflammation, or endothelial function. Fenofibrate decreased creatinine clearance and estimated glomerular filtration rate. No effect on albuminuria was seen with fenofibrate. Instead, Cystatin C was increased during fenofibrate treatment. Conclusions. 1) Elevation of VLDL 1 triglycerides was the major determinant of plasma triglyceride concentration in control subjects and type 2 diabetic patients. 2) LDL with high apoCIII showed multiple atherogenic properties, that were only partially mediated by apoCIII per se in type 2 diabetes 3) Fenofibrate demonstrated no effect on surrogate markers of atherosclerosis. 4) Fenofibrate had no effect on albuminuria and the observed decrease in markers of renal function could complicate the clinical surveillance of the patients. 5) Fenofibrate can be used to treat severe hypertriglyceridemia or in combination therapy with statins, but not to increase HDL levels.
Resumo:
Background. Kidney transplantation (KTX) is considered to be the best treatment of terminal uremia. Despite improvements in short-term graft survival, a considerable number of kidney allografts are lost due to the premature death of patients with a functional kidney and to chronic allograft nephropathy (CAN). Aim. To investigate the risk factors involved in the progression of CAN and to analyze diagnostic methods for this entity. Materials and methods. Altogether, 153 implant and 364 protocol biopsies obtained between June 1996 and April 2008 were analyzed. The biopsies were classified according to Banff ’97 and chronic allograft damage index (CADI). Immunohistochemistry for TGF-β1 was performed in 49 biopsies. Kidney function was evaluated by creatinine and/or cystatin C measurement and by various estimates of glomerular filtration rate (GFR). Demographic data of the donors and recipients were recorded after 2 years’ follow-up. Results. Most of the 3-month biopsies (73%) were nearly normal. The mean CADI score in the 6-month biopsies decreased significantly after 2001. Diastolic hypertension correlated with ΔCADI. Serum creatinine concentration at hospital discharge and glomerulosclerosis were risk factors for ΔCADI. High total and LDL cholesterol, low HDL and hypertension correlated with chronic histological changes. The mean age of the donors increased from 41 -52 years. Older donors were more often women who had died from an underlying disease. The prevalence of delayed graft function increased over the years, while acute rejections (AR) decreased significantly over the years. Sub-clinical AR was observed in 4% and it did not affect long-term allograft function or CADI. Recipients´ drug treatment was modified along the Studies, being mycophenolate mophetil, tacrolimus, statins and blockers of the renine-angiotensin-system more frequently prescribed after 2001. Patients with a higher ΔCADI had lower GFR during follow-up. CADI over 2 was best predicted by creatinine, although with modest sensitivity and specificity. Neither cystatin C nor other estimates of GFR were superior to creatinine for CADI prediction. Cyclosporine A toxicity was seldom seen. Low cyclosporin A concentration after 2 h correlated with TGF- β1 expression in interstitial inflammatory cells, and this predicted worse graft function. Conclusions. The progression of CAN has been affected by two major factors: the donors’ characteristics and the recipients’ hypertension. The increased prevalence of DGF might be a consequence of the acceptance of older donors who had died from an underlying disease. Implant biopsies proved to be of prognostic value, and they are essential for comparison with subsequent biopsies. The progression of histological damage was associated with hypertension and dyslipidemia. The augmented expression of TGF-β1 in inflammatory cells is unclear, but it may be related to low immunosuppression. Serum creatinine is the most suitable tool for monitoring kidney allograft function on every-day basis. However, protocol biopsies at 6 and 12 months predicted late kidney allograft dysfunction and affected the clinical management of the patients. Protocol biopsies are thus a suitable surrogate to be used in clinical trials and for monitoring kidney allografts.
Resumo:
Background. Hyperlipidemia is a common concern in patients with heterozygous familial hypercholesterolemia (HeFH) and in cardiac transplant recipients. In both groups, an elevated serum LDL cholesterol level accelerates the development of atherosclerotic vascular disease and increases the rates of cardiovascular morbidity and mortality. The purpose of this study is to assess the pharmacokinetics, efficacy, and safety of cholesterol-lowering pravastatin in children with HeFH and in pediatric cardiac transplant recipients receiving immunosuppressive medication. Patients and Methods. The pharmacokinetics of pravastatin was studied in 20 HeFH children and in 19 pediatric cardiac transplant recipients receiving triple immunosuppression. The patients ingested a single 10-mg dose of pravastatin, and plasma pravastatin concentrations were measured up to 10/24 hours. The efficacy and safety of pravastatin (maximum dose 10 to 60 mg/day and 10 mg/day) up to one to two years were studied in 30 patients with HeFH and in 19 cardiac transplant recipients, respectively. In a subgroup of 16 HeFH children, serum non-cholesterol sterol ratios (102 x mmol/mol of cholesterol), surrogate estimates of cholesterol absorption (cholestanol, campesterol, sitosterol), and synthesis (desmosterol and lathosterol) were studied at study baseline (on plant stanol esters) and during combination with pravastatin and plant stanol esters. In the transplant recipients, the lipoprotein levels and their mass compositions were analyzed before and after one year of pravastatin use, and then compared to values measured from 21 healthy pediatric controls. The transplant recipients were grouped into patients with transplant coronary artery disease (TxCAD) and patients without TxCAD, based on annual angiography evaluations before pravastatin. Results. In the cardiac transplant recipients, the mean area under the plasma concentration-time curve of pravastatin [AUC(0-10)], 264.1 * 192.4 ng.h/mL, was nearly ten-fold higher than in the HeFH children (26.6 * 17.0 ng.h/mL). By 2, 4, 6, 12 and 24 months of treatment, the LDL cholesterol levels in the HeFH children had respectively decreased by 25%, 26%, 29%, 33%, and 32%. In the HeFH group, pravastatin treatment increased the markers of cholesterol absorption and decreased those of synthesis. High ratios of cholestanol to cholesterol were associated with the poor cholesterol-lowering efficacy of pravastatin. In cardiac transplant recipients, pravastatin 10 mg/day lowered the LDL cholesterol by approximately 19%. Compared with the patients without TxCAD, patients with TxCAD had significantly lower HDL cholesterol concentrations and higher apoB-100/apoA-I ratios at baseline (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.031; and 0.7 ± 0.2 vs. 0.5 ± 0.1, P = 0.034) and after one year of pravastatin use (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.013; and 0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). Compared with healthy controls, the transplant recipients exhibited elevated serum triglycerides at baseline (median 1.3 [range 0.6-3.2] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P=0.0002), which negatively correlated with their HDL cholesterol concentration (r = -0.523, P = 0.022). Recipients also exhibited higher apoB-100/apoA1 ratios (0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). In addition, elevated triglyceride levels were still observed after one year of pravastatin use (1.3 [0.5-3.5] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P = 0.0004). Clinically significant elevations in alanine aminotransferase, creatine kinase, or creatinine ocurred in neither group. Conclusions. Immunosuppressive medication considerably increased the plasma pravastatin concentrations. In both patient groups, pravastatin treatment was moderately effective, safe, and well tolerated. In the HeFH group, high baseline cholesterol absorption seemed to predispose patients to insufficient cholesterol-lowering efficacy of pravastatin. In the cardiac transplant recipients, low HDL cholesterol and a high apoB-100/apoA-I ratio were associated with development of TxCAD. Even though pravastatin in the transplant recipients effectively lowered serum total and LDL cholesterol concentrations, it failed to normalize their elevated triglyceride levels and, in some patients, to prevent the progression of TxCAD.
Resumo:
In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.
Resumo:
Without estrogen action, the fusion of the growth plates is postponed and statural growth continues for an exceptionally long time. Aromatase inhibitors, blockers of estrogen biosynthesis, have therefore emerged as a new potential option for the treatment of children with short stature. We investigated the efficacy of the aromatase inhibitor letrozole in the treatment of boys with idiopathic short stature (ISS) using a randomised, placebo-controlled, double-blind research setting. A total of 30 boys completed the two-year treatment. By decreasing estrogen-mediated central negative feedback, letrozole increased gonadotrophin and testosterone secretion in pubertal boys, whereas the pubertal increase in IGF-I was inhibited. Treatment with letrozole effectively delayed bone maturation and increased predicted adult height by 5.9 cm (P0.001), while placebo had no effect on either parameter. The effect of letrozole treatment on near-final height was studied in another population, in boys with constitutional delay of puberty, who received letrozole (n=9) or placebo (n=8) for one year, in combination with low-dose testosterone for six months during adolescence. The mean near-final height of boys randomised to receive testosterone and letrozole was significantly greater than that of boys who received testosterone and placebo (175.8 vs. 169.1 cm, P=0.04). As regards safety, treatment effects on bone health, lipid metabolism, insulin sensitivity, and body composition were monitored in boys with ISS. During treatment, no differences in bone mass accrual were evident between the treatment groups, as evaluated by dual-energy x-ray absorptiometry measurements of the lumbar spine and femoral neck. Bone turnover and cortical bone growth, however, were affected by letrozole treatment. As indicated by differences in markers of bone resorption (U-INTP) and formation (S-PINP and S-ALP), the long-term rate of bone turnover was lower in letrozole-treated boys, despite their more rapid advancement in puberty. Letrozole stimulated cortical bone growth in those who progressed in puberty: the metacarpal index (MCI), a measure of cortical bone thickness, increased more in letrozole-treated pubertal boys than in placebo-treated pubertal boys (25% vs. 9%, P=0.007). The change in MCI correlated positively with the mean testosterone-to-estradiol ratio. In post-treatment radiographic evaluation of the spine, a high rate of vertebral deformities - mild anterior wedging and mild compression deformities - were found in both placebo and letrozole groups. In pubertal boys with ISS treated with letrozole, stimulated testosterone secretion was associated with a decrease in the percentage of fat mass and in HDL-cholesterol, while LDL-cholesterol and triglycerides remained unchanged. Insulin sensitivity, as evaluated by HOMA-IR, was not significantly affected by the treatment. In summary, treatment with the aromatase inhibitor letrozole effectively delayed bone maturation and increased predicted adult height in boys with ISS. Long-term follow-up data of boys with constitutional delay of puberty, treated with letrozole for one year during adolescence, suggest that the achieved gain in predicted adult height also results in increased adult height. However, until the safety of aromatase inhibitor treatment in children and adolescents is confirmed, such treatment should be considered experimental.
Resumo:
Tibolone, a synthetic steroid, is effective in the treatment of postmenopausal symptoms. Its cardiovascular safety profile has been questioned, because tibolone reduces the levels of high-density lipoprotein (HDL) cholesterol. Soy-derived isoflavones may offer health benefits, particularly as regards lipids and also other cardiovascular disease (CVD) risk factors. The soy-isoflavone metabolite equol is thought to be the key as regards soy-related beneficial effects. We studied the effects of soy supplementation on various CVD risk factors in postmenopausal monkeys and postmenopausal women using tibolone. In addition, the impact of equol production capability was studied. A total of 18 monkeys received casein/lactalbumin (C/L) (placebo), tibolone, soy (a woman s equivalent dose of 138 mg of isoflavones), or soy with tibolone in a randomized order for 14 weeks periods, and there was a 4-week washout (C/L) in between treatments. Postmenopausal women using tibolone (N=110) were screened by means of a one-week soy challenge to find 20 women with equol production capability (4-fold elevation from baseline equol level) and 20 control women, and treated in a randomized cross-over trial with a soy powder (52 g of soy protein containing 112 mg of isoflavones) or placebo for 8 weeks. Before and after the treatments lipids and lipoproteins were assessed in both monkeys and women. In addition, blood pressure, arterial stiffness, endothelial function, sex steroids, sex hormone-binding globulin (SHBG), and vascular inflammation markers were assessed. A 14% increase in plasma low-density lipoprotein (LDL) + very low-density lipoprotein (VLDL) cholesterol was observed in tibolone-treated monkeys vs. placebo. Soy treatment resulted in a 18% decrease in LDL+VLDL cholesterol, and concomitant supplementation with tibolone did not negate the LDL+VLDL cholesterol-lowering effect of soy. A 30% increase in HDL cholesterol was observed in monkeys fed with soy, whereas HDL cholesterol levels were reduced (48%) after tibolone. Interestingly, Soy+Tibolone diet conserved HDL cholesterol levels. Tibolone alone increased the total cholesterol (TC):HDL cholesterol ratio, whereas it was reduced by Soy or Soy+Tibolone. In postmenopausal women using tibolone, reductions in the levels of total cholesterol and LDL cholesterol were seen after soy supplementation compared with placebo, but there was no effect on HDL cholesterol, blood pressure, arterial stiffness or endothelial function. Soy supplementation decreased the levels of estrone in equol producers, and those of testosterone in the entire study population. No changes were seen in the levels of androstenedione, dehydroepiandrosterone sulfate, or SHBG. The levels of vascular cell adhesion molecule-1 increased, and platelet-selectin decreased after soy treatment, whereas C-reactive protein and intercellular adhesion molecule-1 remained unchanged. At baseline and unrelated to soy treatment, equol producers had lower systolic, diastolic and mean arterial pressures, less arterial stiffness and better endothelial function than non-producers. To conclude, soy supplementation reversed the tibolone-induced fall in HDL cholesterol in postmenopausal monkeys, but this effect was not seen in women taking tibolone. Equol production capability was associated with beneficial cardiovascular changes and thus, this characteristic may offer cardiovascular benefits, at least in women using tibolone.
Resumo:
Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.
Resumo:
Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.
Resumo:
Objective: To study the antihyperlipidemic effect of Cedrus deodara (C. deodara) against monosodium glutamate (MSG) induced obesity in neonatal rats. Materials and Methods: The studies were carried out on newborn neonatal rats and were injected intraperitoneally with 2 mg/g of MSG on the 2(nd) and 4(th) postnatal days and 4 mg/g on 6(th), 8(th) and 10(th) postnatal days. Ethanolic extract (EE) and acetone extract (AE) of C. deodara was administered in a dose of 100 and 200 mg/kg, p.o./day at the age of 65 days. On day 60 of treatment, body weight, locomotor activity, body temperature, and various biochemical parameters like serum glucose, total cholesterol, triglyceride, and organs weights were recorded. Results: There was a significant reduction in body weight, organs and increased body temperature, locomotor activity after treatment with extracts. C. deodara decreased serum glucose, total cholesterol and triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels and increased high density lipoprotein (HDL) significantly has compared to MSG-control rats. Conclusion: C. deodara extracts exhibited antihyperlipidemic effect and it possesses anti-obesity properties in MSG induced obese rats.
Resumo:
The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-most cell that forms the vulva, P7.p.
The mirror symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing Wnt signals control the division patterns of the VPCs by controlling the localization of SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 and Van Gogh/VANG-1. All three transmembrane proteins control orientation through the localization of the SYS-1.
The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the posterior body wall muscle of the worm as well as the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. These results illustrate the first evidence of the interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity as well as highlight the promiscuous nature of Wnt signaling within C. elegans.
Resumo:
Avaliar os efeitos benéficos do tratamento com óleo de peixe sobre mudanças metabólicas e morfológicas no pâncreas e tecido adiposo de camundongos C57BL/6 alimentados com dieta rica em lipídeos e sacarose (HLS).Camundongos machos da linhagem C57BL/6, foram alimentados com dieta padrão (P) ou dieta HLS. Aos 3 meses de idade, os camundongos do grupo HLS foram separados em grupo não-tratado (HLS) ou grupo tratado com óleo de peixe (HLS-Px, 1,5g/kg/dia). Aos 4 meses de idade os animais foram sacrificados. O grupo HLS apresentou aumento da massa corporal (MC) e no acúmulo do tecido adiposo total, porém o grupo HLS-Px apresentou menor MC e massa de tecido adiposo comparado ao grupo HLS. As concentrações de glicose plasmática e insulina não foram afetadas entre os grupos, no entanto os grupos HLS e HLS-Px apresentaram maior HOMA-IR. Os grupos HLS e HLS-Px apresentaram maiores concentrações plasmáticas do colesterol total e LDL-C, porém o grupo HLS-Px apresentou maior concentração plasmática do HDL-C e redução da concentração de triglicerídeos. Os adipócitos do grupo HLS apresentaram maior diâmetro quando comparado aos grupos controle e HLS-Px. A massa do pâncreas foi menor no grupo HLS-Px e as ilhotas pancreáticas apresentaram maior diâmetro no grupo HLS, quando comparado ao grupo controle. A expressão de insulina, glucagon e GLUT-2 mostrou-se forte em todas as ilhotas pancreáticas do grupo controle, mas o grupo HLS apresentou fraca expressão para o GLUT-2. Entretanto, HLS-Px apresentou maior expressão do GLUT-2. O tratamento com óleo de peixe foi capaz de reduzir o ganho de massa corporal e a concentração de triglicerídeos, assim como reduzir o acúmulo de tecido adiposo,hipertrofia dos adipócitos, das ilhotas pancreáticas, assim como prevenir a redução do GLUT-2 em camundongos C57BL/6.
Resumo:
Camundongos C57BL/6 machos com oito semanas de idade alimentados com diferentes dietas durante 16 semanas: de alta densidade energética (ADE, 26% das calorias de carboidrato, 60% de gordura e 14% de proteína) ou dieta padrão (CO, 76% das calorias de carboidrato, 10% de gordura e 14% de proteína). Comparado ao grupo CO, o grupo ADE apresentou maior ganho de massa e maior depósito de tecido adiposo, bem como maiores níveis plasmáticos de triglicerídeos, LDL-c, ALT, AST e fosfatase alcalina e com maiores níveis de corticosterona plasmática, glicose de jejum e insulina com uma consequente resistência à insulina (avaliado pelo HOMA-IR). No TOTG, a glicose plasmática aumentou ao máximo após 15 min. da administração de glicose oral em ambos os grupos. Entretanto os níveis de glicose foram maiores no grupo ADE que no grupo CO (P<0.0001). O clearance de glicose no grupo ADE foi reduzido, permanecendo aumentado após 120 min. (P<0.001), caracterizando intolerância a glicose no grupo ADE. O teste intraperitoneal de tolerância à insulina mostrou uma rápida redução na glicose plasmática após 15 minutos da administração de insulina em ambos os grupos, mas significativamente aumentada no grupo ADE (P<0.0001), permanecendo desta forma até os 120 min. após a administração. Concluindo, camundongos C57BL/6 respondem a dieta ADE desenvolvimento os sinais e sintomas associados à síndrome metabólica observada em humanos. Por conseguinte, este modelo animal poderá ajudar-nos a compreender melhor as alterações em órgãos alvos associadas com a síndrome metabólica, assim como a possibilidade de tratamentos diferentes.