984 resultados para Respiratory function
Resumo:
This study seeks to assess the effect of inspiratory muscle training (IMT) on pulmonary function, respiratory muscle strength, and endurance in morbidly obese patients submitted to bariatric surgery. Thirty patients were randomly assigned to sham muscular training, or to IMT with a threshold device (40% of maximum inspiratory pressure, MIP), for 30 min/day, from the 2nd until 30th postoperative (PO) day. All of them were submitted to a standard respiratory kinesiotherapy and early deambulation protocol. Data on spirometry, maximum static respiratory pressures, and respiratory muscle endurance were collected on the PO days 2, 7, 14, and 30 in a blinded matter. IMT enabled increases in PO MIP and endurance, and an earlier recovery of the spirometry parameters FEV(1), PEF, and FEF(25-75%). Comparing to preoperative values, MIP was increased by 13% at the 30th PO day in the trained group, whereas control group had a reduction of 8%, with higher values for the IMT group (30th PO, IMT-130.6 +/- 22.9 cmH(2)O; controls-112.9 +/- 25.1 cmH(2)O; p < 0.05). Muscular endurance at the 30th PO day was increased in the trained group comparing to preoperative value (61.5 +/- 39.6 s vs 114.9 +/- 55.2 s; p < 0.05), a finding not observed in the control group (81.7 +/- 44.3 vs 95.2 +/- 42.0 s). IMT improves inspiratory muscle strength and endurance and accounts for an earlier recovery of pulmonary airflows in morbidly obese patients submitted to bariatric surgery.
Resumo:
Background. Respiratory symptoms associated with smoking habit seem to be age dependent. However, there are few reports about the effect of tobacco in young populations. The objective of this study was to analyze the effect of smoking on respiratory symptoms and lung function in 23- to 25-year-old adults in Brazil. This study had a cross-sectional design and included 2063 young people in the city of Ribeirao Preto, Sao Paulo State. Methods: Subjects completed a questionnaire used by the European Community Respiratory Health Survey and underwent spirometry and bronchial challenge test with methacholine. Multiple logistic regression analysis and multiple linear regression analysis were carried out to assess the association between smoking and respiratory symptoms, bronchial hyperresponsiveness, forced expiratory volume in 1 second (FEV1), and forced vital capacity (FVC), adjusted for confounding variables. Results: Prevalence of smoking habit was 17.2% with consumption (median) of 10 cigarettes per day (interquartile range 3-20). There was a significant association between smoking and respiratory symptoms. Smoking was associated to wheezing with odds ratio (95%Cl) of 6.11 (4.03-9.28) among those smoking :10 cigarettes per day and 3.36 (2.11-5.37) among those smoking <10 cigarettes per day. Associations were found for other respiratory symptoms. Smoking was associated with lower FEV1/FVC ratio. No association was detected between smoking and FEV1 or bronchial hyperresponsiveness. Conclusions: These findings highlight the early health consequences of smoking among young adults. These results prompt the necessity to elaborate urgent programs to reduce tobacco habit in young populations.
Resumo:
The African (Protopterus sp.) and South American lungfish (Lepidosiren paradoxa) inhabit shallow waters, that seasonally dry out, which induces aestivation and cocoon formation in Protopterus. Differently, L. paradoxa has no cocoon, and it aestivates in a simple burrow. In water PaCO(2) is 21.8 +/- 0.4 mmHg (mean values +/- S.E.M.; n = 5), whereas aestivation for 20 days increased PaCO(2) to as much as 37.6 +/- 2.1 mmHg, which remained the same after 40 days (35.8 +/- 3.3 mmHg). Concomitantly. the plasma [HCO(3)(-)]-values for animals in water were 22.5 +/- 0.5 mM, which after 20 days increased to 40.2 +/- 2.3 mM and after 40 days to 35.8 +/- 3.3 mM. Initially in water, PaO(2) was 87.7 +/- 2.0 mmHg, but 20 days in aestivation reduced the value to 80.5 +/- 2.2 and later (40 days) to 77.1 +/- 3.0 mmHg. Meanwhile, aestivation had no effect on pHa and hematocrit. The blood pressures were equal for animals in the water or in the burrow (P(mean) similar to 30 mmHg), and cardiac frequency (f(H)) fell from 31 beats min(-1) to 22 beats min(-1) during 40 days of aestivation. The osmolality (mOsm kg H(2)O(-1)) was elevated after 20 and 40 days of aestivation but declined upon return to water. The transition front activity to aestivation involves new set-points for the variables that determine the acid-base status and PaO(2) of the animals, along with a reduction of cardiac frequency. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
KCNQ1 (K(V)LQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study. the properties and regulation of the cloned sK(V)LQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
1. K(V)LQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential Defects in ion channels have been demonstrated in cardiac arrhythmia. This channel is inhibited potently by the chromanol 293B, The same compound has been shown to block cAMP-dependent electrolyte secretion in rat and human colon, Therefore, it was suggested that a K+ channel similar to K(V)LQT1 is expressed in the colonic epithelium. 2, In the present paper, expression of K(V)LQT1 and its function in colonic epithelial cells is described. Reverse transcription-polymerase chain reaction analysis of rat colonic mucosa demonstrated expression of K(V)LQT1 in both crypt cells and surface epithelium. When expressed in Xenopus oocytes, K(V)LQT1 induced a typical delayed activated K+ current. 3, As demonstrated, the channel activity could be further activated by increases in intracellular cAMP. These and other data support the concept that K(V)LQT1 is forming a component of the basolateral cAMP-activated Kf conductance in the colonic epithelium.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
Both the gaseous and the particulate phases of tobacco and cannabis smoke contain a similar range of harmful chemicals. However, differing patterns of inhalation mean that smoking a 'joint' of cannabis results in exposure to significantly greater amounts of combusted material than with a tobacco cigarette. The histopathological effects of cannabis smoke exposure include changes consistent with acute and chronic bronchitis. Cellular dysplasia has also been observed, suggesting that, like tobacco smoke, cannabis exposure has the potential to cause malignancy. These features are consistent with the clinical presentation. Symptoms of cough and early morning sputum production are common (20-25%) even in young individuals who smoke cannabis alone. Almost all studies indicate that the effects of cannabis and tobacco smoking are additive and independent. Public health education should dispel the myth that cannabis smoking is relatively safe by highlighting that the adverse respiratory effects of smoking cannabis are similar to those of smoking tobacco, even although it remains to be confirmed that smoking cannabis alone leads to the development of chronic lung disease.
Resumo:
Vasoactive agents were examined in arteries from control rats and rats exposed to intermittent hypoxia (10% oxygen; 8 h/day) for 3, 5 or 20 days. Hypoxic rats developed right ventricular hypertrophy after 5 days, but became pulmonary hypertensive (elevated right ventricular systolic pressure; RVSP) only after 20 days. In pulmonary arteries (main and intralobar), responses to acetylcholine and ionomycin (endothelium-dependent vasodilators) were reduced after 20 and 5 days of intermittent hypoxia, whereas contractions to 5-hydroxytryptamine (5-HT) were enhanced (potency increase >10-fold) after 20, 5 and 3 days. Contractions to endothelin-1 and a thromboxane-mimetic, but not Ca-2divided by, were also increased. No changes in vascular function occurred in aorta. Since changes in pulmonary vascular function preceded the increase in RVSP they do not result from, but may contribute to, the development of hypoxia-induced pulmonary hypertension. If similar changes occur in humans, they may be important in conditions characterised by intermittent, as opposed to continuous, hypoxia. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
As survival of patients with CF increases,glucose intolerance and cystic fibrosisrelated diabetes (CFRD),ar e increasingly recognised common complications. CFRD may be preceded by a pre-diabetic state. Using markers identified as being associated with CFRD may improve targeted screening. Aim: To identify features consistently predicting CFRD in paediatric patients. Patients diagnosed with CFRD between January 1997–January 2002 were compared with age and sex matched controls. Clinical,micr obiological, and hospitalisation data was collected at time of CFRD diagnosis,and at six monthly intervals for 3 yr prior to diagnosis. Eight patients with CFRD were identified,mean age 13.7 yr (S.D. 3.49) at time of diagnosis. Control patients underwent OGTT to ensure normal glucose tolerance. Patients with CFRD had a lower FEV1 up to 12 months prior to diagnosis however, this was only significant at diagnosis. There was no difference in weight and height z scores between the 2 groups; however,the decrease in weight and height z scores in the CFRD group over 3 yr prior to diagnosis was significant. Mean number of days in hospital and admissions per patient significantly increased in the CFRD group,6 months prior to diagnosis. No other significant differences were observed between the 2 groups. Conclusions: This study has shown a difference in lung function,gr owth parameters and frequency of hospital admissions between patients with CFRD and controls. These differences may be utilised as tools for targeted screening in the paediatricyadolescent population. Further larger scale studies are required to improve guidelines for targeted screening in this population.
Resumo:
Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.
Resumo:
Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.
Resumo:
Recent epidemiologic studies clearly outline the link between fungal sensibilization and exarcebations of asthma, leading to increased morbidity and mortality. Amongst the filamentous fungi, Aspergillus scpecies have been strongly linked with exarcebations of asthma and other respiratory allergic diseases. Particles of approximately 1 to 4 pm are deposited in the lower respiratory tract. Therefore, conidia of A. fumigatus are small enough to traverse the terminal respiratory airways and reach the pulmonary alveoli, whereas the larger conidia of some other Aspergillus species, such as A. flavus and A. niger, tend to be deposited in the paranasal sinuses and upper airways. Exposute to environmental fungal spores has been associated with worsening asthma symptoms, lung function, hospital admissions and asthma-related deaths.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure–volume curves and the pseudophaseplane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.