910 resultados para Resorption


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is characterized by low bone mass, micro architectural impairment of bone tissue, and a subsequent in crease in fracture risk. Fractures or the vertebrae and distal forearm, as well as the proximal femur, or hip fracture, are included. Hip fracture is associated with high mortality, morbidity and medical expenses. There is a dramatic increase in the incidence of hip fracture with age. Hip fracture incidence is 350 times higher in women aged 85 years and over comparatively to women between 35 and 44 years of age. In recent studies in Switzerland, it was observed that the annual age adjusted incidence rate of hip fracture was comparable with similar rates for white population in industrialized countries, although in men the rates were relatively high. Among the major risk factors for osteoporosis are age, female gender, white and Asian race, and menopause. Postmenopausal estrogen replacement therapy reduces bone resorption. Family history of osteoporosis, frail constitution, as well as excessive alcohol intake, cigarette smoking, chronic insufficient nutritional calcium intake and physical inactivity are other risk factors. A cardinal element is the peak bone mass reached in the third or fourth decade of life. Independently of osteoporosis, falls are a key agent in fractures; several medical conditions and drugs increase the risk of falling. There is an enormous social and financial cost of osteoporosis; the annual cost of medical treatment only for hip fracture is close to Fr. 200 million in Switzerland. The burden of osteoporosis is likely to increase in the future because of the demographic aging of the population unless large scale preventive interventions are undertaken.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The use of bioabsorbable materials for orthopaedic useand traumatic fracture fixation in children has been poorly investigatedin the litterature and the effects on growing bones seem contradictory.The aim of the study is to compare the clinical and radiological resultsand evolution between bioabsorbable and traditional K-Wires for thetreatment of elbow epiphyseal fractures in children.Method: From jan. 2008 to Dec. 2009 21 children with similar fracturesand age were separated in two groups according to the way of fracturefixation: bioabsorbable K-Wire group and traditional K-Wire group.Follow-up was done at 3, 6 and 12 month post-operatively. Range ofmotion and elbow stability were measured for all patients. Theradiological evolution of the two groups were compared in term ofconsolidation, ossous resorption and radiolucencies. The clinicalresults were compared according to the Mayo Elbow Peformancescore. Controlateral elbow is compared with injured elbow in the twogroups.Results: In the bioabsorbable K-wire group, there were 10 children,including 5 girles and 5 boys with an average age of 9.5 years, rangingfrom 5 to 14 years. They were 7 external condylar fractures and3 epitrochlear fractures. In the traditional K-Wire group there were11 children, 2 girls and 9 boys with an average age of 7.6 years,ranging from 4 to 14 years. There were 10 external condylar fracturesand 1 epitrochlear fracture. At first follow up. The Mayo ElbowPerformance score was 93.8 (85-100 )for the bioabsorbable K-Wiregroup and 95.5 (85-100) for the traditional K-Wire group. In twochildren from the bioabsorbable K-Wire group there were transitoryradiolucencies along the wire tract on the x-ray, without clinicalmanifestation of it.We didn't see any premature closure of growingcartilage.Discussion: There is no significant differencies in term of clinical andradiological outcome between the two groups. The use ofbioabsorbable pins seems to be a good alternative to removabletraditional materials, avoiding a second operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphosphonates are known for their strong inhibitory effect on bone resorption. Their influence on bone formation however is less clear. In this study we investigated the spatio-temporal effect of locally delivered Zoledronate on peri-implant bone formation and resorption in an ovariectomized rat femoral model. A cross-linked hyaluronic acid hydrogel was loaded with the drug and applied bilaterally in predrilled holes before inserting polymer screws. Static and dynamic bone parameters were analyzed based on in vivo microCT scans performed first weekly and then biweekly. The results showed that the locally released Zoledronate boosted bone formation rate up to 100% during the first 17 days after implantation and reduced the bone resorption rate up to 1000% later on. This shift in bone remodeling resulted in an increase in bone volume fraction (BV/TV) by 300% close to the screw and 100% further away. The double effect on bone formation and resorption indicates a great potential of Zoledronate-loaded hydrogel for enhancement of peri-implant bone volume which is directly linked to improved implant fixation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Tenofovir (TDF) use has been associated with proximal renal tubulopathy, reduced calculated glomerular filtration rates (cGFR) and losses in bone mineral density. Bone resorption could result in a compensatory osteoblast activation indicated by an increase in serum alkaline phosphatase (sAP). A few small studies have reported a positive correlation between renal phosphate losses, increased bone turnover and sAP. METHODS: We analysed sAP dynamics in patients initiating (n = 657), reinitiating (n = 361) and discontinuing (n = 73) combined antiretroviral therapy with and without TDF and assessed correlations with clinical and epidemiological parameters. RESULTS: TDF use was associated with a significant increase of sAP from a median of 74 U/I (interquartile range 60-98) to a plateau of 99 U/I (82-123) after 6 months (P < 0.0001), with a prompt return to baseline upon TDF discontinuation. No change occurred in TDF-sparing regimes. Univariable and multivariable linear regression analyses revealed a positive correlation between sAP and TDF use (P < or = 0.003), but no correlation with baseline cGFR, TDF-related cGFR reduction, changes in serum alanine aminotransferase (sALT) or active hepatitis C. CONCLUSIONS: We document a highly significant association between TDF use and increased sAP in a large observational cohort. The lack of correlation between TDF use and sALT suggests that the increase in sAP is because of the bone isoenzyme and indicates stimulated bone turnover. This finding, together with published data on TDF-related renal phosphate losses, this finding raises concerns that TDF use could result in osteomalacia with a loss in bone mineral density at least in a subset of patients. This potentially severe long-term toxicity should be addressed in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrin has been long used clinically for hemostasis and sealing, yet extension of use in other applications has been limited due to its relatively rapid resorption in vivo, even with addition of aprotinin or other protease inhibitors. We report an engineered aprotinin variant that can be immobilized within fibrin and thus provide extended longevity. When recombinantly fused to a transglutaminase substrate domain from α(2)-plasmin inhibitor (α(2)PI(1-8)), the resulting variant, aprotinin-α(2)PI(1-8), was covalently crosslinked into fibrin matrices during normal thrombin/factor XIIIa-mediated polymerization. Challenge with physiological plasmin concentrations revealed that aprotinin-α(2)PI(1-8)-containing matrices retained 78% of their mass after 3 wk, whereas matrices containing wild type (WT) aprotinin degraded completely within 1 wk. Plasmin challenge of commercial sealants Omrixil and Tisseel, supplemented with aprotinin-α(2)PI(1-8) or WT aprotinin, showed extended longevity as well. When seeded with human dermal fibroblasts, aprotinin-α(2)PI(1-8)-supplemented matrices supported cell growth for at least 33% longer than those containing WT aprotinin. Subcutaneously implanted matrices containing aprotinin-α(2)PI(1-8) were detectable in mice for more than twice as long as those containing WT aprotinin. We conclude that our engineered recombinant aprotinin variant can confer extended longevity to fibrin matrices more effectively than WT aprotinin in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone replacement therapy (HRT) is an established approach for the treatment and the prevention of osteoporosis. Many studies with bone mineral density as primary outcome have shown significant efficacy. Observational studies have indicated a significant reduction of hip fracture risk in cohorts of women who maintained HRT therapy. The Women's Health Initiative is the first prospective randomised controlled study which showed a positive effect of HRT in terms of reduction of vertebral and hip fractures risk. Unfortunately, this study has been interrupted after 5.2 years because of the unsupportable increase of risk of cardiovascular disease and breast cancer. Compliance with HRT, however, is typically poor because of the potential side effects and possible increased risk of breast or endometrial cancer. Nevertheless, there is now evidence that lower doses of estrogens in elderly women may prevent bone loss while minimizing the side effects seen with higher doses. Combination therapies using low doses estrogen should probably be reserved for patients who continue to fracture on single therapy. Selective estrogen receptor modulators (SERMs) are very interesting drugs. The goal of these agents is to maximize the beneficial effect of estrogen on bone and to minimize or antagonize the deleterious effects on the breast and endometrium. Raloxifene, approved for the prevention and the treatment of osteoporosis, has been shown to reduce the risks of vertebral fracture in large clinical trials. However, they don't reduce non vertebral fractures. Tibolone is a synthetic steroid that increased bone mineral density at lumbar spine and femoral neck. But no trial has been performed with fractures as end point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone homeostasis is a well-balanced process that is largely dependent on the contribution of both bone-forming osteoblasts and bone-resorbing osteoclasts. A new study (Wan et al., 2007) suggests a previously unsuspected role for the transcription factor PPARgamma in promoting bone progenitors to the osteoclastic lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium and vitamin D supplementation are warranted for the treatment of osteoporosis, when other specific drugs are used. Vitamin D supplementation is necessary when the plasma level of 25-hydroxy-vitamin D is below 30 nmol/l (12 pg/l) in order to avoid any increase of the plasma parathyroid hormone level. Bisphosphonates are the most widely drugs used. Recent advances will provide patients with a more convenient therapeutically equivalent alternative: the once-weekly oral dosing regimen and probably the possibility to give infusions at intervals of up to one year. Parathyroid hormone administered subcutaneously daily produced a dramatic increase of trabecular and cortical bone mineral density, and an important decrease of vertebral and nonvertebral fracture risk. Strontium is a new original drug, which stimulates bone formation, and inhibits bone resorption. It significantly improves trabecular and cortical bone mass. Calcitonin not only prevents the recurrence of vertebral fractures, but possibly could decrease hip fractures risk. Hydrochlorothiazide preserves the bone mineral density, and decreases nonvertebral fracture risk, as showed in epidemiological studies. Large clinical trials with statins therapy in appropriate populations are required to find out whether these drugs have any role in preventing fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate, during the first postoperative year in obese pre-menopausal women, the effects of laparoscopic gastric banding on calcium and vitamin D metabolism, the potential modifications of bone mineral content and bone mineral density, and the risk of development of secondary hyperparathyroidism. SUBJECTS: Thirty-one obese pre-menopausal women aged between 25 and 52 y with a mean body mass index (BMI) of 43.6 kg/m(2), scheduled for gastric banding were included. Patients with renal, hepatic, metabolic and bone disease were excluded. METHODS: Body composition and bone mineral density (BMD) were measured at baseline, 6 and 12 months after gastric banding using dual-energy X-ray absorptiometry. Serum calcium, phosphate, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, bilirubin, urea, creatinine, uric acid, proteins, parathormone, vitamin D(3), IGF-1, IGF-BP3 and telopeptide, as well as urinary telopeptide, were measured at baseline and 1, 3, 6, 9 and 12 months after surgery. RESULTS: After 1 y vitamin D3 remained stable and PTH decreased by 12%, but the difference was not significant. Serum telopeptide C increased significantly by 100% (P<0.001). There was an initial drop of the IGF-BP3 during the first 6 months (P<0.05), but the reduction was no longer significant after 1 y. The BMD of cortical bone (femoral neck) decreased significantly and showed a trend of a positive correlation with the increase of telopeptides (P<0.06). The BMD of trabecular bone, at the lumbar spine, increased proportionally to the reduction of hip circumference and of body fat. CONCLUSION: There is no evidence of secondary hyperparathyroidism 1 y after gastric banding. Nevertheless biochemical bone markers show a negative remodelling balance, characterized by an increase of bone resorption. The serum telopeptide seems to be a reliable parameter, not affected by weight loss, to follow up bone turnover after gastroplasty.