1000 resultados para Resolución 46 de 2012
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
In this work, a wide analysis of local search multiuser detection (LS-MUD) for direct sequence/code division multiple access (DS/CDMA) systems under multipath channels is carried out considering the performance-complexity trade-off. It is verified the robustness of the LS-MUD to variations in loading, E(b)/N(0), near-far effect, number of fingers of the Rake receiver and errors in the channel coefficients estimates. A compared analysis of the bit error rate (BER) and complexity trade-off is accomplished among LS, genetic algorithm (GA) and particle swarm optimization (PSO). Based on the deterministic behavior of the LS algorithm, it is also proposed simplifications over the cost function calculation, obtaining more efficient algorithms (simplified and combined LS-MUD versions) and creating new perspectives for the MUD implementation. The computational complexity is expressed in terms of the number of operations in order to converge. Our conclusion pointed out that the simplified LS (s-LS) method is always more efficient, independent of the system conditions, achieving a better performance with a lower complexity than the others heuristics detectors. Associated to this, the deterministic strategy and absence of input parameters made the s-LS algorithm the most appropriate for the MUD problem. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This work summarizes some results about static state feedback linearization for time-varying systems. Three different necessary and sufficient conditions are stated in this paper. The first condition is the one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control Letters, 21, 277-283]. The second and the third are the generalizations of known results due respectively to [Aranda-Bricaire, E., Moog, C. H., Pomet, J. B. (1995). A linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control, 40, 127-132] and to [Jakubczyk, B., Respondek, W. (1980). On linearization of control systems. Bulletin del` Academie Polonaise des Sciences. Serie des Sciences Mathematiques, 28, 517-522]. The proofs of the second and third conditions are established by showing the equivalence between these three conditions. The results are re-stated in the infinite dimensional geometric approach of [Fliess, M., Levine J., Martin, P., Rouchon, P. (1999). A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922-937]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.
Resumo:
The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
Resumo:
We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.
Resumo:
Eight different models to represent the effect of friction in control valves are presented: four models based on physical principles and four empirical ones. The physical models, both static and dynamic, have the same structure. The models are implemented in Simulink/Matlab (R) and compared, using different friction coefficients and input signals. Three of the models were able to reproduce the stick-slip phenomenon and passed all the tests, which were applied following ISA standards. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells
Resumo:
Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, Including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom After treating endothelial cells with venom toxins, we observed that the venom Interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L interned:a venom on endothelial cells is not mediated by venom internalization (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
We molecularly characterized 81 cryptococcal isolates recovered from cerebrospinal fluid samples of 77 patients diagnosed between 1998 and 2007 as having cryptococcal meningitis in Uberaba Minas Gerais, Brazil. Fifty-seven (74%) were male with a mean age 35.6 years. Seventy-two (88.9%) of the isolates were from 68 AIDS patients and cryptococcosis was the first AIDS-defining condition in 38 (55.9%) patients. Cryptococcosis and AIDS were simultaneously diagnosed in 25 (65.8%) of these 38 patients. Genotypes were characterized through the use of URA5 restriction fragment length polymorphisms analysis, the genetic variability was determined using PCR-fingerprinting with the minisatellite-specific primer M13, and the mating type and serotypes were established by PCR. Seventy-six of the 81 isolates were Cryptococcus neoformans (93.8%), while the remaining five were C. gattii (6.1%), but all were mating type a. C. neoformans isolates were genotype VNI (serotype A), while C. gattii isolates were VGII. Four of the latter isolates were identical, but only two were from AIDS patients. Six of the nine isolates from non-AIDS patients were VNI. PCR fingerprints of the isolates from two of the three AIDS patients with clinical relapse were 100% identical. The predominance of VNI and mating type a is in accordance with data from other parts of the world. The occurrence of VGII in Minas Gerais indicates a geographical expansion within Brazil.
Resumo:
The Golgi method has been used for over a century to describe the general morphology of neurons in the nervous system of different species. The ""single-section"" Golgi method of Gabbott and Somogyi (1984) and the modifications made by Izzo et al. (1987) are able to produce consistent results. Here, we describe procedures to show cortical and subcortical neurons of human brains immersed in formalin for months or even years. The tissue was sliced with a vibratome, post-fixed in a combination of paraformaldehyde and picric acid in phosphate buffer, followed by osmium tetroxide and potassium dicromate, ""sandwiched"" between cover slips, and immersed in silver nitrate. The whole procedure takes between 5 and 11 days to achieve good results. The Golgi method has its characteristic pitfalls but, with this procedure, neurons and glia appear well-impregnated, allowing qualitative and quantitative studies under light microscopy. This contribution adds to the basic techniques for the study of human nervous tissue with the same advantages described for the ""single-section"" Golgi method in other species; it is easy and fast, requires minimal equipment, and provides consistent results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Neutrophilic granulocytes play a major role in the initiation and resolution of the inflammatory response, and demonstrate significant transcriptional and translational activity. Although much was known about neutrophils prior to the introduction of proteomics, the use of MS-based methodologies has provided an unprecedented tool to confirm and extend previous findings. In the present study, we performed a Gel-LC-MS/MS analysis of neutrophil detergent insoluble and whole cell lysate fractions of resting neutrophils. We achieved a set of identifications through the use of high-resolution mass spectrometry and validation of its data. We identified a total of 1249 proteins with a wide range of intensities from both detergent-insoluble and whole cell lysate fractions, allowing a mapping of proteins such as those involved in intracellular transport (Rab and Sec family proteins) and cell signaling (S100 proteins). These results represent the most comprehensive proteomic characterization of resting human neutrophils to date, and provide important information relevant for further studies of the immune system in health and disease. The methods applied here can be employed to help us understand how neutrophils respond to various physiologic and pathophysiologic conditions and could be extended to protein quantitation after cell activation.