836 resultados para Random time change
Resumo:
Technological and societal change, along with organisational and market change (driven by contracting-out and privatisation), are “creating a new generation of infrastructures” [1]. While inter-organisational contractual arrangements can improve maintenance efficiency through consistent and repeatable patterns of action - unanticipated difficulties in implementation can reduce the performance of these arrangements. When faced with unsatisfactory performance of contracting-out arrangements, government organisations may choose to adapt and change these arrangements over time, with the aim of improving performance. This paper enhances our understanding of ‘next generation infrastructures’ by examining adaptation of the organisational arrangements for the maintenance of these assets, in a case study spanning 20 years.
Resumo:
This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.
Resumo:
Australian Constitutional referendums have been part of the Australian political system since federation. Up to the year 1999 (the time of the last referendum in Australia), constitutional change in Australia does not have a good history of acceptance. Since 1901, there have been 44 proposed constitutional changes with eight gaining the required acceptance according to section 128 of the Australian Constitution. In the modern era since 1967, there have been 20 proposals over seven referendum votes for a total of four changes. Over this same period, there have been 13 federal general elections which have realised change in government just five times. This research examines the electoral behaviour of Australian voters from 1967 to 1999 for each referendum. Party identification has long been a key indicator in general election voting. This research considers whether the dominant theory of voter behaviour in general elections (the Michigan Model) provides a plausible explanation for voting in Australian referendums. In order to explain electoral behaviour in each referendum, this research has utilised available data from the Australian Electoral Commission, the 1996 Australian Bureau of Statistics Census data, and the 1999 Australian Constitutional Referendum Study. This data has provided the necessary variables required to measure the impact of the Michigan Model of voter behaviour. Measurements have been conducted using bivariate and multivariate analyses. Each referendum provides an overview of the events at the time of the referendum as well as the =yes‘ and =no‘ cases at the time each referendum was initiated. Results from this research provide support for the Michigan Model of voter behaviour in Australian referendum voting. This research concludes that party identification, as a key variable of the Michigan Model, shows that voters continue to take their cues for voting from the political party they identify with in Australian referendums. However, the outcome of Australian referendums clearly shows that partisanship is only one of a number of contributory factors in constitutional referendums.
Resumo:
Social and psychological theories have provided a plethora of evidence showing that the physical difficulty to express appropriate social interactions between drivers expresses itself in aggression, selfish driving and anti-social behaviour. Therefore there is a need to improve interactions between drivers and allow clearer collective decision making between them. Personal characteristics and the driving situations play strong roles in driver’s aggression. Our approach is centered around the driving situation as opposed to focusing on personality characteristics. It examines aggression and manipulates contextual variables such as driver’s eye contact exchanges. This paper presents a new unobtrusive in-vehicle system that aims at communicating drivers’ intentions, elicit social responses and increasing mutual awareness. It uses eye gaze as a social cue to affect collective decision making with the view to contribute to safe driving. The authors used a driving simulator to design a case control experiment in which eye gaze movements are conveyed with an avatar. Participants were asked to drive through different types of intersections. An avatar representing the head of the other driver was displayed and driver behaviour was analysed. Significant eye gaze pattern difference where observed when an avatar was displayed. Drivers cautiously refer to the avatar when information is required on the intention of others (e.g. when they do not have the right of way). The majority of participants reported the perception of “being looked at”. The number of glances and time spent gazing at the avatar did not indicate an unsafe distraction by standards of in-vehicle device ergonomic design. Avatars were visually consulted primarily in less demanding driving situations, which underlines their non-distractive nature.
Resumo:
The co-authors raise two matters they consider essential for the future development of ECEfS. The first is the need to create deep foundations based in research. At a time of increasing practitioner interest, research in ECEfS is meagre. A robust research community is crucial to support quality in curriculum and pedagogy, and to promote learning and innovation in thinking and practice. The second 'essential' for the expansion and uptake of ECEfS is broad systemic change. All level within the early childhood education system - individual teachers and classrooms, whole centres and schools, professional associations and networks, accreditation and employing authorities, and teacher educators - must work together to create and reinforce the cultural and educational changes required for sustainability. This chapter provides explanations of processes to engender systemic change. It illustrates a systems approach, with reference to a recent study focused on embedding EfS into teacher education. This study emphasises the apparent contradiction that the answer to large-scale reform lies with small-scale reforms that build capacity and make connections.
Resumo:
Environmental impacts caused during Australia's comparatively recent settlement by Europeans are evident. Governments (both Commonwealth and States) have been largely responsible for requiring landholders – through leasehold development conditions and taxation concessions – to conduct clearing that is now perceived as damage. Most governments are now demanding resource protection. There is a measure of bewilderment (if not resentment) among landholders because of this change. The more populous States, where most overall damage has been done (i.e. Victoria and New South Wales), provide most support for attempts to stop development in other regions where there has been less damage. Queensland, i.e. the north-eastern quarter of the continent, has been relatively slow to develop. It also holds the largest and most diverse natural environments. Tree clearing is an unavoidable element of land development, whether to access and enhance native grasses for livestock or to allow for urban developments (with exotic tree plantings). The consequences in terms of regulations are particularly complex because of the dynamic nature of vegetation. The regulatory terms used in current legislation – such as 'Endangered' and 'Of concern' – depend on legally-defined, static baselines. Regrowth and fire damage are two obvious causes of change. A less obvious aspect is succession, where ecosystems change naturally over long timeframes. In the recent past, the Queensland Government encouraged extensive tree-clearing e.g. through the State Brigalow Development Scheme (mostly 1962 to 1975) which resulted in the removal of some 97% of the wide-ranging mature forests of Acacia harpophylla. At the same time, this government controls National Parks and other reservations (occupying some 4% of the State's 1.7 million km2 area) and also holds major World Heritage Areas (such as the Great Barrier Reef and the Wet Tropics Rainforest) promulgated under Commonwealth legislation. This is a highly prescriptive approach, where the community is directed on the one hand to develop (largely through lease conditions) and on the other to avoid development (largely by unusable reserves). Another approach to development and conservation is still possible in Queensland. For this to occur, however, a more workable and equitable solution than has been employed to date is needed, especially for the remote lands of this State. This must involve resident landholders, who have the capacity (through local knowledge, infrastructure and daily presence) to undertake most costeffectively sustainable land-use management (with suitable attention to ecosystems requiring special conservation effort), that is, provided they have the necessary direction, encouragement and incentive to do so.
Resumo:
The objective of this study was to investigate the factors that influence midlife women to make positive exercise and dietary changes. In late 2005 questionnaires were mailed to 866 women aged 51–66 years from rural and urban locations in Queensland, Australia and participating in Stage 2 of the Healthy Aging of Women Study. The questionnaires sought data on socio-demographics, body mass index (BMI), chronic health conditions, self-efficacy, exercise and dietary behavior change since age 40, and health-related quality of life. Five hundred and sixty four (69%) were completed and returned by early 2006. Data analysis comprised descriptive and bivariate statistics and structural equation modeling. The results showed that midlife is a significant time for women to make positive health behavior changes. Approximately one-third of the sample (34.6%) indicated that they had increased their exercise and around 60% had made an effort to eat more healthily since age 40. Modeling showed self-efficacy to be important in making both exercise and dietary changes. Although education appeared to influence self-efficacy in relation to exercise change, this was not the case for dietary change. The study has application for programs promoting healthy aging among women, and implies that those with low education, high BMI and poor mental health may need considerable support to improve their lifestyles.
Resumo:
Longitudinal data, where data are repeatedly observed or measured on a temporal basis of time or age provides the foundation of the analysis of processes which evolve over time, and these can be referred to as growth or trajectory models. One of the traditional ways of looking at growth models is to employ either linear or polynomial functional forms to model trajectory shape, and account for variation around an overall mean trend with the inclusion of random eects or individual variation on the functional shape parameters. The identification of distinct subgroups or sub-classes (latent classes) within these trajectory models which are not based on some pre-existing individual classification provides an important methodology with substantive implications. The identification of subgroups or classes has a wide application in the medical arena where responder/non-responder identification based on distinctly diering trajectories delivers further information for clinical processes. This thesis develops Bayesian statistical models and techniques for the identification of subgroups in the analysis of longitudinal data where the number of time intervals is limited. These models are then applied to a single case study which investigates the neuropsychological cognition for early stage breast cancer patients undergoing adjuvant chemotherapy treatment from the Cognition in Breast Cancer Study undertaken by the Wesley Research Institute of Brisbane, Queensland. Alternative formulations to the linear or polynomial approach are taken which use piecewise linear models with a single turning point, change-point or knot at a known time point and latent basis models for the non-linear trajectories found for the verbal memory domain of cognitive function before and after chemotherapy treatment. Hierarchical Bayesian random eects models are used as a starting point for the latent class modelling process and are extended with the incorporation of covariates in the trajectory profiles and as predictors of class membership. The Bayesian latent basis models enable the degree of recovery post-chemotherapy to be estimated for short and long-term followup occasions, and the distinct class trajectories assist in the identification of breast cancer patients who maybe at risk of long-term verbal memory impairment.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.
Resumo:
The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
This paper describes the development and evaluation of a tactical lane change model using the forward search algorithm, for use in a traffic simulator. The tactical lane change model constructs a set of possible choices of near-term maneuver sequences available to the driver and selects the lane change action at the present time to realize the best maneuver plan. Including near term maneuver planning in the driver behavior model can allow a better representation of the complex interactions in situations such as a weaving section and high-occupancy vehicle (HOV) lane systems where drivers must weave across several lanes in order to access the HOV lanes. To support the investigation, a longitudinal control model and a basic lane change model were also analyzed. The basic lane change model is similar to those used by today's commonly-used traffic simulators. Parameters in all models were best-fit estimated for selected vehicles from a real-world freeway vehicle trajectory data set. The best-fit estimation procedure minimizes the discrepancy between the model vehicle and real vehicle's trajectories. With the best fit parameters, the proposed tactical lane change model gave a better overall performance for a greater number of cases than the basic lane change model.
Resumo:
A hip fracture causes permanent changes to life style for older people. Further, two important mortality indicators found post operatively for this group include, the time until surgery after fracture, and pre-operative health status prior to surgery, yet no research is available investigating relationships between time to surgery and health status. The researchers aimed to establish the health status risks for patients aged over 65 years with a non-pathological hip fracture to guide nursing care interventions. A prospective cohort design was used to investigate relationships between time to surgery and measures on pre-operative health status indicators including, skin integrity risk, vigor, mental state, bowel function and continence. Twenty-nine patients with a mean age in years of 81.93 (SD,9.49), were recruited. The mean number of hours from time 1 assessment to surgery was 52.72 (SD,58.35) and the range was 1 hour to 219 hours. At Time 2, the mean scores of vigor and skin integrity risk were significantly higher, indicating poorer health status. A change in health status occurred but possibly due to the small sample size it was difficult to relate this result to time. However the results informed preoperative care prior to surgery, for this group.