945 resultados para Pseudo Steady State Approximation
Resumo:
Heparin has been shown to regulate human neutrophil elastase (HNE) activity. We have assessed the regulatory effect of heparin on Tissue Inhibitor of Metalloproteases-1 [TIMP-1] hydrolysis by HNE employing the recombinant form of TIMP-1 and correlated FRET-peptides comprising the TIMP-1 cleavage site. Heparin accelerates 2.5-fold TIMP-1 hydrolysis by HNE. The kinetic parameters of this reaction were monitored with the aid of a FRET-peptide substrate that mimics the TIMP-1 cleavage site in pre-steady-state conditionsby using a stopped-flow fluorescence system. The hydrolysis of the FRET-peptide substrate by HNE exhibits a pre-steady-state burst phase followed by a linear, steady-state pseudo-first-order reaction. The HNE acylation step (k(2)=21 +/- 1 s(-1)) was much higher than the HNE deacylation step (k(3)=0.57 +/- 0.05 s(-1)). The presence of heparin induces a dramatic effect in the pre-steady-state behavior of HNE. Heparin induces transient lag phase kinetics in HNE cleavage of the FRET-peptide substrate. The pre-steady-state analysis revealed that heparin affects all steps of the reaction through enhancing the ES complex concentration, increasing k(1) 2.4-fold and reducing k(-1) 3.1-fold. Heparin also promotes a 7.8-fold decrease in the k(2) value, whereas the k(3) value in the presence of heparin was increased 58-fold. These results clearly show that heparin binding accelerates deacylation and slows down acylation. Heparin shifts the HNE pH activity profile to the right, allowing HNE to be active at alkaline pH. Molecular docking and kinetic analysis suggest that heparin induces conformational changes in HNE structure. Here, we are showing for the first time that heparin is able to accelerate the hydrolysis of TIMP-1 by HNE. The degradation of TIMP-1is associated to important physiopathological states involving excessive activation of MMPs.
Resumo:
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K (r)) and wall heat transfer coefficient (h (w)) were estimated from steady-state data and the characteristic packed bed time constant (tau) from transient data. A new correlation for the K (r) in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.
Resumo:
The tissue distribution kinetics of a highly bound solute, propranolol, was investigated in a heterogeneous organ, the isolated perfused limb, using the impulse-response technique and destructive sampling. The propranolol concentration in muscle, skin, and fat as well as in outflow perfusate was measured up to 30 min after injection. The resulting data were analysed assuming (1) vascular, muscle, skin and fat compartments as well mixed (compartmental model) and (2) using a distributed-in-space model which accounts for the noninstantaneous intravascular mixing and tissue distribution processes but consists only of a vascular and extravascular phase (two-phase model). The compartmental model adequately described propranolol concentration-time data in the three tissue compartments and the outflow concentration-time curve (except of the early mixing phase). In contrast, the two-phase model better described the outflow concentration-time curve but is limited in accounting only for the distribution kinetics in the dominant tissue, the muscle. The two-phase model well described the time course of propranolol concentration in muscle tissue, with parameter estimates similar to those obtained with the compartmental model. The results suggest, first that the uptake kinetics of propranolol into skin and fat cannot be analysed on the basis of outflow data alone and, second that the assumption of well-mixed compartments is a valid approximation from a practical point of view las, e.g., in physiological based pharmacokinetic modelling). The steady-state distribution volumes of skin and fat were only 16 and 4%, respectively, of that of muscle tissue (16.7 ml), with higher partition coefficient in fat (6.36) than in skin (2.64) and muscle (2.79. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We examine the mean flux across a homogeneous membrane of a charged tracer subject to an alternating, symmetric voltage waveform. The analysis is based on the Nernst-Planck flux equation, with electric field subject to time dependence only. For low frequency electric fields the quasi steady-state flux can be approximated using the Goldman model, which has exact analytical solutions for tracer concentration and flux. No such closed form solutions can be found for arbitrary frequencies, however we find approximations for high frequency. An approximation formula for the average flux at all frequencies is also obtained from the two limiting approximations. Numerical integration of the governing equation is accomplished by use of the numerical method of lines and is performed for four different voltage waveforms. For the different voltage profiles, comparisons are made with the approximate analytical solutions which demonstrates their applicability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thermogravimetric analysis has been widely applied in kinetic studies of carbon gasification, with the associated temporal weight change profiles being used to extract kinetic information and to validate gasification models. However the weight change profiles are not always governed by the intrinsic gasification activity because of the effect of chemisorption and its dynamics. In the present work we theoretically determine the criteria under which weight change profiles can be used to determine intrinsic kinetics for CO2 and O2 gasification by examining the region in which the chemisorption dynamics can be assumed pseudo-steady. It is found that the validity of the pseudo-steady assumption depends on the experimental conditions as well as on the initial surface area of carbon. Based on known mechanisms and rate constants an active surface area region is identified within which the steady state assumption is valid and the effect of chemisorption dynamics is negligible. The size of the permissible region is sensitive to the reaction temperature and gas pressure. The results indicate that in some cases the thermogravimetric data should be used with caution in kinetic studies. A large amount of literature on thermogravimetric analyzer determined char gasification kinetics is examined and the importance of chemisorption dynamics for the data assessed.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
The unconditional expectation of social welfare is often used to assess alternative macroeconomic policy rules in applied quantitative research. It is shown that it is generally possible to derive a linear - quadratic problem that approximates the exact non-linear problem where the unconditional expectation of the objective is maximised and the steady-state is distorted. Thus, the measure of pol icy performance is a linear combinat ion of second moments of economic variables which is relatively easy to compute numerically, and can be used to rank alternative policy rules. The approach is applied to a simple Calvo-type model under various monetary policy rules.
Resumo:
Macroeconomists working with multivariate models typically face uncertainty over which (if any) of their variables have long run steady states which are subject to breaks. Furthermore, the nature of the break process is often unknown. In this paper, we draw on methods from the Bayesian clustering literature to develop an econometric methodology which: i) finds groups of variables which have the same number of breaks; and ii) determines the nature of the break process within each group. We present an application involving a five-variate steady-state VAR.
Resumo:
New Keynesian models rely heavily on two workhorse models of nominal inertia - price contracts of random duration (Calvo, 1983) and price adjustment costs (Rotemberg, 1982) - to generate a meaningful role for monetary policy. These alternative descriptions of price stickiness are often used interchangeably since, to a first order of approximation they imply an isomorphic Phillips curve and, if the steady-state is efficient, identical objectives for the policy maker and as a result in an LQ framework, the same policy conclusions. In this paper we compute time-consistent optimal monetary policy in bench-mark New Keynesian models containing each form of price stickiness. Using global solution techniques we find that the inflation bias problem under Calvo contracts is significantly greater than under Rotemberg pricing, despite the fact that the former typically significant exhibits far greater welfare costs of inflation. The rates of inflation observed under this policy are non-trivial and suggest that the model can comfortably generate the rates of inflation at which the problematic issues highlighted in the trend inflation literature emerge, as well as the movements in trend inflation emphasized in empirical studies of the evolution of inflation. Finally, we consider the response to cost push shocks across both models and find these can also be significantly different. The choice of which form of nominal inertia to adopt is not innocuous.
Resumo:
This paper analyzes the political sustainability of the welfare state in a model where immigration policy is also endogenous. In the model, the skills of the native population are affected by immigration and skill accumulation. Moreover, immigrants affect future policies, once they gain the right to vote. The main finding is that the long-run survival of redistributive policies is linked to an immigration policy specifying both skill and quantity restrictions. In particular, in steady state the unskilled majority admits a limited inflow of unskilled immigrants in order to offset growth in the fraction of skilled voters and maintain a high degree of income redistribution.Interestingly, equilibrium immigration policy shifts from unrestricted skilled immigration,when the country is skill-scarce, to restricted unskilled immigration, as the fraction of native skilled workers increases. The analysis also suggests a new set of variables that may help explain international differences in immigration restrictions.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
We study the effects of time and space correlations of an external additive colored noise on the steady-state behavior of a time-dependent Ginzburg-Landau model. Simulations show the existence of nonequilibrium phase transitions controlled by both the correlation time and length of the noise. A Fokker-Planck equation and the steady probability density of the process are obtained by means of a theoretical approximation.
Resumo:
A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites. Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equilibrium and nonequilibrium steady-state situations, are considered. The model gives quantitative results that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin density. An interpretation of the Staebler-Wronski effect is proposed, based on the ''conversion'' of shallow charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Determination of brain glucose transport kinetics in vivo at steady-state typically does not allow distinguishing apparent maximum transport rate (T(max)) from cerebral consumption rate. Using a four-state conformational model of glucose transport, we show that simultaneous dynamic measurement of brain and plasma glucose concentrations provide enough information for independent and reliable determination of the two rates. In addition, although dynamic glucose homeostasis can be described with a reversible Michaelis-Menten model, which is implicit to the large iso-inhibition constant (K(ii)) relative to physiological brain glucose content, we found that the apparent affinity constant (K(t)) was better determined with the four-state conformational model of glucose transport than with any of the other models tested. Furthermore, we confirmed the utility of the present method to determine glucose transport and consumption by analysing the modulation of both glucose transport and consumption by anaesthesia conditions that modify cerebral activity. In particular, deep thiopental anaesthesia caused a significant reduction of both T(max) and cerebral metabolic rate for glucose consumption. In conclusion, dynamic measurement of brain glucose in vivo in function of plasma glucose allows robust determination of both glucose uptake and consumption kinetics.