987 resultados para Probability generating function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blue whiting (Micromesistius poutassou, http://www.marinespecies.org/aphia.php?p=taxdetails&id=126439) is a small mesopelagic planktivorous gadoid found throughout the North-East Atlantic. This data contains the results of a model-based analysis of larvae captured by the Continuous Plankton Recorder (CPR) during the period 1951-2005. The observations are analysed using Generalised Additive Models (GAMs) of the the spatial, seasonal and interannual variation in the occurrence of larvae. The best fitting model is chosen using the Aikaike Information Criteria (AIC). The probability of occurrence in the continous plankton recorder is then normalised and converted to a probability distribution function in space (UTM projection Zone 28) and season (day of year). The best fitting model splits the distribution into two separate spawning grounds north and south of a dividing line at 53 N. The probability distribution is therefore normalised in these two regions (ie the space-time integral over each of the two regions is 1). The modelled outputs are on a UTM Zone 28 grid: however, for convenience, the latitude ("lat") and longitude ("lon") of each of these grid points are also included as a variable in the NetCDF file. The assignment of each grid point to either the Northern or Southern component (defined here as north/south of 53 N), is also included as a further variable ("component"). Finally, the day of year ("doy") is stored as the number of days elapsed from and included January 1 (ie doy=1 on January 1) - the year is thereafter divided into 180 grid points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical tests of Load-Unload Response Ratio (LURR) signals are carried in order to verify statistical robustness of the previous studies using the Lattice Solid Model (MORA et al., 2002b). In each case 24 groups of samples with the same macroscopic parameters (tidal perturbation amplitude A, period T and tectonic loading rate k) but different particle arrangements are employed. Results of uni-axial compression experiments show that before the normalized time of catastrophic failure, the ensemble average LURR value rises significantly, in agreement with the observations of high LURR prior to the large earthquakes. In shearing tests, two parameters are found to control the correlation between earthquake occurrence and tidal stress. One is, A/(kT) controlling the phase shift between the peak seismicity rate and the peak amplitude of the perturbation stress. With an increase of this parameter, the phase shift is found to decrease. Another parameter, AT/k, controls the height of the probability density function (Pdf) of modeled seismicity. As this parameter increases, the Pdf becomes sharper and narrower, indicating a strong triggering. Statistical studies of LURR signals in shearing tests also suggest that except in strong triggering cases, where LURR cannot be calculated due to poor data in unloading cycles, the larger events are more likely to occur in higher LURR periods than the smaller ones, supporting the LURR hypothesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of generation of fluctuations with respect to the scalar values conditioned on the mixture fraction, which significantly affects turbulent nonpremixed combustion processes, is examined. Simulation of the rate in a major mixing model is investigated and the derived equations can assist in selecting the model parameters so that the level of conditional fluctuations is better reproduced by the models. A more general formulation of the multiple mapping conditioning (MMC) model that distinguishes the reference and conditioning variables is suggested. This formulation can be viewed as a methodology of enforcing certain desired conditional properties onto conventional mixing models. Examples of constructing consistent MMC models with dissipation and velocity conditioning as well as of combining MMC with large eddy simulations (LES) are also provided. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach, based on statistical mechanics, to analyze typical performance of optimum code-division multiple-access (CDMA) multiuser detectors is reviewed. A `black-box' view ot the basic CDMA channel is introduced, based on which the CDMA multiuser detection problem is regarded as a `learning-from-examples' problem of the `binary linear perceptron' in the neural network literature. Adopting Bayes framework, analysis of the performance of the optimum CDMA multiuser detectors is reduced to evaluation of the average of the cumulant generating function of a relevant posterior distribution. The evaluation of the average cumulant generating function is done, based on formal analogy with a similar calculation appearing in the spin glass theory in statistical mechanics, by making use of the replica method, a method developed in the spin glass theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, Drǎgulescu and Yakovenko proposed an analytical formula for computing the probability density function of stock log returns, based on the Heston model, which they tested empirically. Their research design inadvertently favourably biased the fit of the data to the Heston model, thus overstating their empirical results. Furthermore, Drǎgulescu and Yakovenko did not perform any goodness-of-fit statistical tests. This study employs a research design that facilitates statistical tests of the goodness-of-fit of the Heston model to empirical returns. Robustness checks are also performed. In brief, the Heston model outperformed the Gaussian model only at high frequencies and even so does not provide a statistically acceptable fit to the data. The Gaussian model performed (marginally) better at medium and low frequencies, at which points the extra parameters of the Heston model have adverse impacts on the test statistics. © 2005 Taylor & Francis Group Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis is to present numerical investigations of the polarisation mode dispersion (PMD) effect. Outstanding issues on the side of the numerical implementations of PMD are resolved and the proposed methods are further optimized for computational efficiency and physical accuracy. Methods for the mitigation of the PMD effect are taken into account and simulations of transmission system with added PMD are presented. The basic outline of the work focusing on PMD can be divided as follows. At first the widely-used coarse-step method for simulating the PMD phenomenon as well as a method derived from the Manakov-PMD equation are implemented and investigated separately through the distribution of a state of polarisation on the Poincaré sphere, and the evolution of the dispersion of a signal. Next these two methods are statistically examined and compared to well-known analytical models of the probability distribution function (PDF) and the autocorrelation function (ACF) of the PMD phenomenon. Important optimisations are achieved, for each of the aforementioned implementations in the computational level. In addition the ACF of the coarse-step method is considered separately, based on the result which indicates that the numerically produced ACF, exaggerates the value of the correlation between different frequencies. Moreover the mitigation of the PMD phenomenon is considered, in the form of numerically implementing Low-PMD spun fibres. Finally, all the above are combined in simulations that demonstrate the impact of the PMD on the quality factor (Q=factor) of different transmission systems. For this a numerical solver based on the coupled nonlinear Schrödinger equation is created which is otherwise tested against the most important transmission impairments in the early chapters of this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boyd's SBS model which includes distributed thermal acoustic noise (DTAN) has been enhanced to enable the Stokes-spontaneous density depletion noise (SSDDN) component of the transmitted optical field to be simulated, probably for the first time, as well as the full transmitted field. SSDDN would not be generated from previous SBS models in which a Stokes seed replaces DTAN. SSDDN becomes the dominant form of transmitted SBS noise as model fibre length (MFL) is increased but its optical power spectrum remains independent of MFL. Simulations of the full transmitted field and SSDDN for different MFLs allow prediction of the optical power spectrum, or system performance parameters which depend on this, for typical communication link lengths which are too long for direct simulation. The SBS model has also been innovatively improved by allowing the Brillouin Shift Frequency (BS) to vary over the model fibre length, for the nonuniform fibre model (NFM) mode, or to remain constant, for the uniform fibre model (UFM) mode. The assumption of a Gaussian probability density function (pdf) for the BSF in the NFM has been confirmed by means of an analysis of reported Brillouin amplified power spectral measurements for the simple case of a nominally step-index single-mode pure silica core fibre. The BSF pdf could be modified to match the Brillouin gain spectra of other fibre types if required. For both models, simulated backscattered and output powers as functions of input power agree well with those from a reported experiment for fitting Brillouin gain coefficients close to theoretical. The NFM and UFM Brillouin gain spectra are then very similar from half to full maximum but diverge at lower values. Consequently, NFM and UFM transmitted SBS noise powers inferred for long MFLs differ by 1-2 dB over the input power range of 0.15 dBm. This difference could be significant for AM-VSB CATV links at some channel frequencies. The modelled characteristic of Carrier-to-Noise Ratio (CNR) as a function of input power for a single intensity modulated subcarrier is in good agreement with the characteristic reported for an experiment when either the UFM or NFM is used. The difference between the two modelled characteristics would have been more noticeable for a higher fibre length or a lower subcarrier frequency.