979 resultados para Power demand curve
Resumo:
The purpose of this thesis was the screening of power to gas projects worldwide and reviewing the technologies used and applications for the end products. This study focuses solely on technical solutions and feasibility, economical profitability is excluded. With power grids having larger penetrations of intermittent sources such as solar and wind power, the demand and production cannot be balanced in conventional methods. Technologies for storing electric power in times of surplus production are needed, and the concept called power to gas is a solution for this problem. A total of 57 projects mostly located in Europe were reviewed by going through publications, presentations and project web pages. Hydrogen is the more popular end product over methane. Power to gas is a viable concept when power production from intermittent sources needs to be smoothed and time shifted, when carbon free fuels are produced for vehicles and when chemical industry needs carbon neutral raw materials.
Resumo:
John Butler (1728-1796) was originally from Connecticut but settled with his family in the Mohawk valley of New York around 1742. His father was a Captain in the British army and well acquainted with William Johnson (superintendent of Northern Indians). Butler impressed Johnson with his aptitude for Indian languages and diplomacy. He began to work with Johnson in 1755, and received several promotions in the department, until his apparent retirement in the early 1770s. At the onset of the Revolutionary War in 1775, Butler relocated to Canada to join the British forces, settling in Niagara. During the War, Butler was instrumental in maintaining the alliance with the Indians. After the War, Butler became prominent in local affairs in Niagara, but failed to secure any important offices when the province of Upper Canada was formed in 1792. In an effort to recoup some of the financial losses his family suffered during the War, Butler illegally attempted to supply trade goods to the Indian department with his son Andrew, his nephew Walter Butler Sheehan, and Samuel Street, a Niagara merchant.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
Freehand sketching is both a natural and crucial part of design, yet is unsupported by current design automation software. We are working to combine the flexibility and ease of use of paper and pencil with the processing power of a computer to produce a design environment that feels as natural as paper, yet is considerably smarter. One of the most basic steps in accomplishing this is converting the original digitized pen strokes in the sketch into the intended geometric objects using feature point detection and approximation. We demonstrate how multiple sources of information can be combined for feature detection in strokes and apply this technique using two approaches to signal processing, one using simple average based thresholding and a second using scale space.
Resumo:
Introducción: Para millones de parejas alrededor del mundo, la incapacidad de tener hijos es una tragedia personal. Por ello, no es de extrañar que la demanda de técnicas de reproducción asistida (TRA), así como la identificación de las variables que permitan discernir sobre el éxito de estos tratamientos sean crecientes a nivel mundial. Metodología: Estudio observacional, de cohorte retrospectiva. Incluyó las historias clínicas de pacientes de la Unidad de Fertilidad del Country de Bogotá (Conceptum) entre el 20 de enero de 2005 al 15 de diciembre de 2010. El objetivo fue establecer si existe diferencia en los valores séricos de progesterona de las pacientes embarazadas y las que no, así como la identificación de las variables asociadas a éxito del embarazo en pacientes tratadas con técnicas de reproducción asistida. Resultados: Edad promedio 35,7 años (25-45años). Se analizaron 352 ciclos de pacientes, 131 embarazadas (110 partos, 18 abortos y 2 ectópicos). Las variables que en el análisis multivariado tenían mayor asociación con la variable desenlace fueron: niveles séricos de progesterona, edad de la paciente y número de embriones tipo I/II. La capacidad discriminatoria del modelo final se evaluó por medio del área bajo la curva ROC la cual fue de 0,714. La sensibilidad del modelo fue del 33,3% con una especificidad del 84,3%. Discusión: Los niveles séricos de progesterona difieren en las pacientes embarazadas de las que no lo están. Se requiere de un análisis más a fondo para determinar si esta variable se asocia con la viabilidad del embarazo.
Resumo:
In this paper we introduce a new Wiener system modeling approach for memory high power amplifiers in communication systems using observational input/output data. By assuming that the nonlinearity in the Wiener model is mainly dependent on the input signal amplitude, the complex valued nonlinear static function is represented by two real valued B-spline curves, one for the amplitude distortion and another for the phase shift, respectively. The Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first order derivatives recursion. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
The peak congestion of the European grid may create significant impacts on system costs because of the need for higher marginal cost generation, higher cost system balancing and increasing grid reinforcement investment. The use of time of use rates, incentives, real time pricing and other programmes, usually defined as Demand Side Management (DSM), could bring about significant reductions in prices, limit carbon emissions from dirty power plants, and improve the integration of renewable sources of energy. Unlike previous studies on elasticity of residential electricity demand under flat tariffs, the aim of this study is not to investigate the known relatively inelastic relationship between demand and prices. Rather, the aim is to assess how occupancy levels vary in different European countries. This reflects the reality of demand loads, which are predominantly determined by the timing of human activities (e.g. travelling to work, taking children to school) rather than prices. To this end, two types of occupancy elasticity are estimated: baseline occupancy elasticity and peak occupancy elasticity. These represent the intrinsic elasticity associated with human activities of single residential end-users in 15 European countries. This study makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; draw time use demand curves for video and TV watching activity; and estimate national occupancy elasticity levels of single-occupant households. Findings on occupancy elasticities provide an indication of possible DSM strategies based on occupancy levels and not prices.
Resumo:
Wind generation’s contribution to meeting extreme peaks in electricity demand is a key concern for the integration of wind power. In Great Britain (GB), robustly assessing this contribution directly from power system data (i.e. metered wind-supply and electricity demand) is difficult as extreme peaks occur infrequently (by definition) and measurement records are both short and inhomogeneous. Atmospheric circulation-typing combined with meteorological reanalysis data is proposed as a means to address some of these difficulties, motivated by a case study of the extreme peak demand events in January 2010. A preliminary investigation of the physical and statistical properties of these circulation types suggests that they can be used to identify the conditions that are most likely to be associated with extreme peak demand events. Three broad cases are highlighted as requiring further investigation. The high-over-Britain anticyclone is found to be generally associated with very low winds but relatively moderate temperatures (and therefore moderate peak demands, somewhat in contrast to the classic low-wind cold snap that is sometimes apparent in the literature). In contrast, both longitudinally extended blocking over Scotland/Scandinavia and latitudinally extended troughs over western Europe appear to be more closely linked to the very cold GB temperatures (usually associated with extreme peak demands). In both of these latter situations, wind resource averaged across GB appears to be more moderate.
Resumo:
For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.
Resumo:
Lighting and small power will typically account for more than half of the total electricity consumption in an office building. Significant variations in electricity used by different tenants suggest that occupants can have a significant impact on the electricity demand for these end-uses. Yet current modelling techniques fail to represent the interaction between occupant and the building environment in a realistic manner. Understanding the impact of such behaviours is crucial to improve the methodology behind current energy modelling techniques, aiming to minimise the significant gap between predicted and in-use performance of buildings. A better understanding of the impact of occupant behaviour on electricity consumption can also inform appropriate energy saving strategies focused on behavioural change. This paper reports on a study aiming to assess the intent of occupants to switch off lighting and appliances when not in use in office buildings. Based on the Theory of Planned Behaviour, the assessment takes the form of a questionnaire and investigates three predictors to behaviour individually: 1) behavioural attitude; 2) subjective norms; 3) perceived behavioural control. The paper details the development of the assessment procedure and discusses preliminary findings from the study. The questionnaire results are compared against electricity consumption data for individual zones within a multi-tenanted office building. Initial results demonstrate a statistically significant correlation between perceived behavioural control and energy consumption for lighting and small power
Resumo:
Let $R_{t}=\sup_{0\leq s\leq t}X_{s}-X_{t}$ be a Levy process reflected in its maximum. We give necessary and sufficient conditions for finiteness of passage times above power law boundaries at infinity. Information as to when the expected passage time for $R_{t}$ is finite, is given. We also discuss the almost sure finiteness of $\limsup_{t\to 0}R_{t}/t^{\kappa}$, for each $\kappa\geq 0$.
Resumo:
UK wind-power capacity is increasing and new transmission links are proposed with Norway, where hydropower dominates the electricity mix. Weather affects both these renewable resources and the demand for electricity. The dominant large-scale pattern of Euro-Atlantic atmospheric variability is the North Atlantic Oscillation (NAO), associated with positive correlations in wind, temperature and precipitation over northern Europe. The NAO's effect on wind-power and demand in the UK and Norway is examined, focussing on March when Norwegian hydropower reserves are low and the combined power system might be most susceptible to atmospheric variations. The NCEP/NCAR meteorological reanalysis dataset (1948–2010) is used to drive simple models for demand and wind-power, and ‘demand-net-wind’ (DNW) is estimated for positive, neutral and negative NAO states. Cold, calm conditions in NAO− cause increased demand and decreased wind-power compared to other NAO states. Under a 2020 wind-power capacity scenario, the increase in DNW in NAO− relative to NAO neutral is equivalent to nearly 25% of the present-day average rate of March Norwegian hydropower usage. As the NAO varies on long timescales (months to decades), and there is potentially some skill in monthly predictions, we argue that it is important to understand its impact on European power systems.
Resumo:
Biomass is an important source of energy in Thailand and is currently the main renewable energy source, accounting for 40% of the renewable energy used. The Department of Alternative Energy and E�ciency (DEDE), Ministry of Thailand, has been promoting the use of renewable energy in Thailand for the past decade. The new target for renewable energy usage in the country is set at 25% of the �nal energy demand in 2021. Thailand is the world’s fourth largest producer of cassava and this results in the production of signi�cant amounts of cassava rhizome which is a waste product. Cassava rhizome has the potential to be co-�red with coal for the production of heat and power. With suitable co-�ring ratios, little modi�cation will be required in the co-�ring technology. This review article is concerned with an investigation of the feasibility of co-�ring cassava rhizome in a combined heat and power system for a cassava based bio-ethanol plant in Thailand. Enhanced use of cassava rhizome for heat and power production could potentially contribute to a reduction of greenhouse gas emissions and costs, and would help the country to meet the 2021 renewable energy target.
Resumo:
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).