910 resultados para Pooled-regression model
Resumo:
Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.
Resumo:
In this globalized environment, Taiwanese firms have been very successful in achieving growth via international market expansion. In particular, the Taiwanese electronics industry has shown a dynamism lacking in comparable industries around the world. However, in recent years there has been a move by many of the larger Taiwanese manufacturing firms to outsource their manufacturing to low-cost producers such as China in order to remain competitive. Conversely, most Taiwanese small- to medium-sized enterprises (SMEs) have retained their production facilities in Taiwan. These SMEs seek to expand their sales beyond the domestic market by employing an export strategy, making a significant socioeconomic contribution to the domestic and regional economies. This paper highlights the key dimensions such as enhancing factors (benefits/advantages), inhibiting factors (barriers/costs), and managerial factors (characteristics/commitment) that play an important role in the internationalization of SMEs located within the Taiwanese electronics industry. A logistic regression model is used to predict the probability of a firm being an exporter.
Resumo:
Background and Significance Venous leg ulcers are a significant cause of chronic ill-health for 1–3% of those aged over 60 years, increasing in incidence with age. The condition is difficult and costly to heal, consuming 1–2.5% of total health budgets in developed countries and up to 50% of community nursing time. Unfortunately after healing, there is a recurrence rate of 60 to 70%, frequently within the first 12 months after heaing. Although some risk factors associated with higher recurrence rates have been identified (e.g. prolonged ulcer duration, deep vein thrombosis), in general there is limited evidence on treatments to effectively prevent recurrence. Patients are generally advised to undertake activities which aim to improve the impaired venous return (e.g. compression therapy, leg elevation, exercise). However, only compression therapy has some evidence to support its effectiveness in prevention and problems with adherence to this strategy are well documented. Aim The aim of this research was to identify factors associated with recurrence by determining relationships between recurrence and demographic factors, health, physical activity, psychosocial factors and self-care activities to prevent recurrence. Methods Two studies were undertaken: a retrospective study of participants diagnosed with a venous leg ulcer which healed 12 to 36 months prior to the study (n=122); and a prospective longitudinal study of participants recruited as their ulcer healed and data collected for 12 months following healing (n=80). Data were collected from medical records on demographics, medical history and ulcer history and treatments; and from self-report questionnaires on physical activity, nutrition, psychosocial measures, ulcer history, compression and other self-care activities. Follow-up data for the prospective study were collected every three months for 12 months after healing. For the retrospective study, a logistic regression model determined the independent influences of variables on recurrence. For the prospective study, median time to recurrence was calculated using the Kaplan-Meier method and a Cox proportional-hazards regression model was used to adjust for potential confounders and determine effects of preventive strategies and psychosocial factors on recurrence. Results In total, 68% of participants in the retrospective study and 44% of participants in the prospective study suffered a recurrence. After mutual adjustment for all variables in multivariable regression models, leg elevation, compression therapy, self efficacy and physical activity were found to be consistently related to recurrence in both studies. In the retrospective study, leg elevation, wearing Class 2 or 3 compression hosiery, the level of physical activity, cardiac disease and self efficacy scores remained significantly associated (p<0.05) with recurrence. The model was significant (p <0.001); with a R2 equivalent of 0.62. Examination of relationships between psychosocial factors and adherence to wearing compression hosiery found wearing compression hosiery was significantly positively associated with participants’ knowledge of the cause of their condition (p=0.002), higher self-efficacy scores (p=0.026) and lower depression scores (p=0.009). Analysis of data from the prospective study found there were 35 recurrences (44%) in the 12 months following healing and median time to recurrence was 27 weeks. After adjustment for potential confounders, a Cox proportional hazards regression model found that at least an hour/day of leg elevation, six or more days/week in Class 2 (20–25mmHg) or 3 (30–40mmHg) compression hosiery, higher social support scale scores and higher General Self-Efficacy scores remained significantly associated (p<0.05) with a lower risk of recurrence, while male gender and a history of DVT remained significant risk factors for recurrence. Overall the model was significant (p <0.001); with an R2 equivalent 0.72. Conclusions The high rates of recurrence found in the studies highlight the urgent need for further information in this area to support development of effective strategies for prevention. Overall, results indicate leg elevation, physical activity, compression hosiery and strategies to improve self-efficacy are likely to prevent recurrence. In addition, optimal management of depression and strategies to improve patient knowledge and self-efficacy may positively influence adherence to compression therapy. This research provides important information for development of strategies to prevent recurrence of venous leg ulcers, with the potential to improve health and decrease health care costs in this population.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
Aim To identify relationships between preventive activities, psychosocial factors and leg ulcer recurrence in patients with chronic venous leg ulcers. Background Chronic venous leg ulcers are slow to heal and frequently recur, resulting in years of suffering and intensive use of health care resources. Methods A prospective longitudinal study was undertaken with a sample of 80 patients with a venous leg ulcer recruited when their ulcer healed. Data were collected from 2006–2009 from medical records on demographics, medical history and ulcer history; and from self-report questionnaires on physical activity, nutrition, preventive activities and psychosocial measures. Follow-up data were collected via questionnaires every three months for 12 months after healing. Median time to recurrence was calculated using the Kaplan-Meier method. A Cox proportional-hazards regression model was used to adjust for potential confounders and determine effects of preventive strategies and psychosocial factors on recurrence. Results: There were 35 recurrences in a sample of 80 participants. Median time to recurrence was 27 weeks. After adjustment for potential confounders, a Cox proportional hazards regression model found that at least an hour/day of leg elevation, six or more days/week in Class 2 (20–25mmHg) or 3 (30–40mmHg) compression hosiery, higher social support scale scores and higher General Self-Efficacy scores remained significantly associated (p<0.05) with a lower risk of recurrence, while male gender and a history of DVT remained significant risk factors for recurrence. Conclusion Results indicate that leg elevation, compression hosiery, high levels of self-efficacy and strong social support will help prevent recurrence.
Resumo:
In this study we propose a virtual index for measuring the relative innovativeness of countries. Using a multistage virtual benchmarking process, the best and rational benchmark is extracted for inefficient ISs. Furthermore, Tobit and Ordinary Least Squares (OLS) regression models are used to investigate the likelihood of changes in inefficiencies by investigating country-specific factors. The empirical results relating to the virtual benchmarking process suggest that the OLS regression model would better explain changes in the performance of innovation- inefficient countries.
Resumo:
Background: Rapid weight gain in infancy is an important predictor of obesity in later childhood. Our aim was to determine which modifiable variables are associated with rapid weight gain in early life. Methods: Subjects were healthy infants enrolled in NOURISH, a randomised, controlled trial evaluating an intervention to promote positive early feeding practices. This analysis used the birth and baseline data for NOURISH. Birthweight was collected from hospital records and infants were also weighed at baseline assessment when they were aged 4-7 months and before randomisation. Infant feeding practices and demographic variables were collected from the mother using a self administered questionnaire. Rapid weight gain was defined as an increase in weight-for-age Z-score (using WHO standards) above 0.67 SD from birth to baseline assessment, which is interpreted clinically as crossing centile lines on a growth chart. Variables associated with rapid weight gain were evaluated using a multivariable logistic regression model. Results: Complete data were available for 612 infants (88% of the total sample recruited) with a mean (SD) age of 4.3 (1.0) months at baseline assessment. After adjusting for mother's age, smoking in pregnancy, BMI, and education and infant birthweight, age, gender and introduction of solid foods, the only two modifiable factors associated with rapid weight gain to attain statistical significance were formula feeding [OR=1.72 (95%CI 1.01-2.94), P= 0.047] and feeding on schedule [OR=2.29 (95%CI 1.14-4.61), P=0.020]. Male gender and lower birthweight were non-modifiable factors associated with rapid weight gain. Conclusions: This analysis supports the contention that there is an association between formula feeding, feeding to schedule and weight gain in the first months of life. Mechanisms may include the actual content of formula milk (e.g. higher protein intake) or differences in feeding styles, such as feeding to schedule, which increase the risk of overfeeding. Trial Registration: Australian Clinical Trials Registry ACTRN12608000056392
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.
Resumo:
This paper seeks to identify and quantify sources of the lagging productivity in Singapore’s retail sector as reported in the Economic Strategies Committee 2010 report. A two-stage analysis is adopted. In the first stage, the Malmquist productivity index is employed which provides measures of productivity change, technological change and efficiency change. In the second stage, technical efficiency estimates are regressed against explanatory variables based on a truncated regression model. Sources of technical efficiency were attributed to quality of workers while product assortment and competition negatively impacted on efficiency.
Resumo:
Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Background and significance: Older adults with chronic diseases are at increasing risk of hospital admission and readmission. Approximately 75% of adults have at least one chronic condition, and the odds of developing a chronic condition increases with age. Chronic diseases consume about 70% of the total Australian health expenditure, and about 59% of hospital events for chronic conditions are potentially preventable. These figures have brought to light the importance of the management of chronic disease among the growing older population. Many studies have endeavoured to develop effective chronic disease management programs by applying social cognitive theory. However, limited studies have focused on chronic disease self-management in older adults at high risk of hospital readmission. Moreover, although the majority of studies have covered wide and valuable outcome measures, there is scant evidence on examining the fundamental health outcomes such as nutritional status, functional status and health-related quality of life. Aim: The aim of this research was to test social cognitive theory in relation to self-efficacy in managing chronic disease and three health outcomes, namely nutritional status, functional status, and health-related quality of life, in older adults at high risk of hospital readmission. Methods: A cross-sectional study design was employed for this research. Three studies were undertaken. Study One examined the nutritional status and validation of a nutritional screening tool; Study Two explored the relationships between participants. characteristics, self-efficacy beliefs, and health outcomes based on the study.s hypothesized model; Study Three tested a theoretical model based on social cognitive theory, which examines potential mechanisms of the mediation effects of social support and self-efficacy beliefs. One hundred and fifty-seven patients aged 65 years and older with a medical admission and at least one risk factor for readmission were recruited. Data were collected from medical records on demographics, medical history, and from self-report questionnaires. The nutrition data were collected by two registered nurses. For Study One, a contingency table and the kappa statistic was used to determine the validity of the Malnutrition Screening Tool. In Study Two, standard multiple regression, hierarchical multiple regression and logistic regression were undertaken to determine the significant influential predictors for the three health outcome measures. For Study Three, a structural equation modelling approach was taken to test the hypothesized self-efficacy model. Results: The findings of Study One suggested that a high prevalence of malnutrition continues to be a concern in older adults as the prevalence of malnutrition was 20.6% according to the Subjective Global Assessment. Additionally, the findings confirmed that the Malnutrition Screening Tool is a valid nutritional screening tool for hospitalized older adults at risk of readmission when compared to the Subjective Global Assessment with high sensitivity (94%), and specificity (89%) and substantial agreement between these two methods (k = .74, p < .001; 95% CI .62-.86). Analysis data for Study Two found that depressive symptoms and perceived social support were the two strongest influential factors for self-efficacy in managing chronic disease in a hierarchical multiple regression. Results of multivariable regression models suggested advancing age, depressive symptoms and less tangible support were three important predictors for malnutrition. In terms of functional status, a standard regression model found that social support was the strongest predictor for the Instrumental Activities of Daily Living, followed by self-efficacy in managing chronic disease. The results of standard multiple regression revealed that the number of hospital readmission risk factors adversely affected the physical component score, while depressive symptoms and self-efficacy beliefs were two significant predictors for the mental component score. In Study Three, the results of the structural equation modelling found that self-efficacy partially mediated the effect of health characteristics and depression on health-related quality of life. The health characteristics had strong direct effects on functional status and body mass index. The results also indicated that social support partially mediated the relationship between health characteristics and functional status. With regard to the joint effects of social support and self-efficacy, social support fully mediated the effect of health characteristics on self-efficacy, and self-efficacy partially mediated the effect of social support on functional status and health-related quality of life. The results also demonstrated that the models fitted the data well with relative high variance explained by the models, implying the hypothesized constructs under discussion were highly relevant, and hence the application for social cognitive theory in this context was supported. Conclusion: This thesis highlights the applicability of social cognitive theory on chronic disease self-management in older adults at risk of hospital readmission. Further studies are recommended to validate and continue to extend the development of social cognitive theory on chronic disease self-management in older adults to improve their nutritional and functional status, and health-related quality of life.
Resumo:
Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.
Resumo:
Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.
Resumo:
Background Previous studies have found that high and cold temperatures increase the risk of childhood diarrhea. However, little is known about whether the within-day variation of temperature has any effect on childhood diarrhea. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to examine the relationship between diurnal temperature range and emergency department admissions for diarrhea among children under five years in Brisbane, from 1st January 2003 to 31st December 2009. Results There was a statistically significant relationship between diurnal temperature range and childhood diarrhea. The effect of diurnal temperature range on childhood diarrhea was the greatest at one day lag, with a 3% (95% confidence interval: 2%–5%) increase of emergency department admissions per 1°C increment of diurnal temperature range. Conclusion Within-day variation of temperature appeared to be a risk factor for childhood diarrhea. The incidence of childhood diarrhea may increase if climate variability increases as predicted.