837 resultados para Poly(vinylidene fluoride-trifuoroethylene)
Resumo:
0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.
Resumo:
Recombinant Escherichia coli strains harboring the genes from Alcaligenes eutrophus for polyhydroxyalkanoate biosynthesis were constructed and compared for their ability to synthesize poly(3-hydroxybutyrate) in a defined medium with whey as the sole carbon source. The highest PHB concentration and PHB content obtained were 5.2 g/L and 81% of dry cell weight, respectively.
Resumo:
Poly(ethylene glycol) decorated poly( methyl methacrylate) particles were synthesized by means of emulsion polymerization using poly(ethylene glycol) sorbitan monolaurate (Tween-20) as surfactant. PMMA/PEG particles presented mean diameter (195 +/- 15) nm, indicating narrow size distribution. The adsorption behavior of bovine serum albumin (BSA) and concanavalin A (ConA) onto PMMA/PEG particles was investigated by means of spectrophotometry. Adsorption isotherms obtained for BSA onto PMMA/PEG particles fitted well sigmoidal function, which is typical for multilayer adsorption. Con A adsorbed irreversibly onto PMMA/PEG particles. The efficiency of ConA covered particles to induce dengue virus quick agglutination was evaluated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this article was to estimate quantitative differences for GAPDH transcripts and poly(A) mRNA: (i) between oocytes collected from cumulus-oocyte complexes (COCs) qualified morphologically as grades A and B; (ii) between grade A oocytes before and after in vitro maturation (IVM); and (iii) among in vitro-produced embryos at different developmental stages. To achieve this objective a new approach was developed to estimate differences between poly(A) mRNA when using small samples. The approach consisted of full-length cDNA amplification (acDNA) monitored by real-time PCR, in which the cDNA from half of an oocyte or embryo was used as a template. The GAPDH gene was amplified as a reverse transcription control and samples that were not positive for GAPDH transcripts were discarded. The fold differences between two samples were estimated using delta Ct and statistical analysis and were obtained using the pairwise fixed reallocation randomization test. It was found that the oocytes recovered from grade B COCs had quantitatively less poly(A) mRNA (p < 0.01) transcripts compared with grade A COCs (1 arbitrary unit expression rate). In the comparison with immature oocytes (I arbitrary unit expression rate), the quantity of poly(A) mRNA did not change during IVM, but declined following IVF and varied with embryo culture (p < 0.05). Amplification of cDNA by real-time PCR was an efficient method to estimate differences in the amount of poly(A) mRNA between oocytes and embryos. The results obtained from individual oocytes suggested an association between poly(A) mRNA abundance and different morphological qualities of oocytes from COCs. In addition, a poly(A) mRNA profile was characterized from oocytes undergoing IVM, fertilization and blastocyst heating.
Resumo:
Objective: The purpose of the study was to investigate whether dentine irradiation with a pulsed CO(2) laser (10.6 mu m) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model. Design: The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm(2) (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11j/cm(2) (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer - ICP-OES. Additionally intra-pulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey`s test (alpha = 0.05). Results: In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 degrees C. Conclusion: It can be concluded that under the conditions of this study, CO(2) laser irradiation (10.6 mu m) with 11J/cm(2) (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F(-)) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F(-) for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F(-) intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F(-), control vs. 50 ppm F(-) and 5 ppm F(-) vs. 50 ppm F(-) groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and 0c-2,1-globulin) and one related to detoxification (aflatoxin-Bl-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F(-) toxicity, even in low doses. 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8-14, 2011; View this article online at wileyonlinelibrary.com. DOI 10:1002/jbt.20353
Resumo:
Previous studies have indicated that the use of low-fluoride dentifrices could lead to proportionally higher plaque fluoride levels when compared with conventional dentifrices. This double-blind, randomized, crossover study determined the effects of placebo, low-fluoride, and conventional dentifrices on plaque fluoride concentrations ([F]) in children living in communities with 0.04, 0.72, and 3.36 ppm F in the drinking water. Children used the toothpastes twice daily, for 1 wk. Samples were collected 1 and 12 hrs after the last use of dentifrices and were analyzed for fluoride and calcium. Similar increases were found 1 hr after the children brushed with low-fluoride (ca. 1.9 mmol F/kg) and conventional (ca. 2.4 mmol F/kg) dentifrices in the 0.04- and 0.72-ppm-F communities. Despite the fact that the increases were less pronounced in the 3.36-ppm-F community, our results indicate that the use of a low-fluoride dentifrice promotes a proportionally higher increase in plaque [F] when compared with that achieved with a conventional dentifrice, based on dose-response considerations.
Resumo:
It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background: Low-fluoride dentifrices have been suggested as alternatives to reduce dental fluorosis risk, but there is no consensus regarding their clinical effectiveness, which has been suggested to be increased when their pH is acidic. Aims: This single-blind randomized clinical trial evaluated the caries increment during the use of a low-fluoride acidic liquid dentifrice. Methods: Four-year-old schoolchildren (n = 1,402) living in a fluoridated area (0.6-0.8 ppm F) were randomly allocated to 4 groups differing according to the type of dentifrice used over a 20-month period. Group 1 (n = 345): liquid dentifrice, 1,100 ppm F, pH 4.5. Group 2 (n = 343): liquid dentifrice, 1,100 ppm F, pH 7.0. Group 3 (n = 354): liquid dentifrice, 550 ppm F, pH 4.5. Group 4 (n = 360): toothpaste, 1,100 ppm F, pH 7.0. At baseline and after 20 months, clinical examinations were conducted (dmfs index) and caries increment was calculated. Data were analysed by GLM procedure using classrooms (cluster) as unit of analysis (p < 0.05). Results: The mean +/- SD (95% CI) net increments found were as follows. Group 1: 2.06 +/- 2.38 (1.8-2.3); group 2: 2.08 +/- 2.87 (1.7-2.4); group 3: 2.05 +/- 2.79 (1.7-2.4), and group 4: 2.08 +/- 2.34 (1.8-2.4). No significant differences were detected among the groups. Conclusion: In a population with high caries risk living in a fluoridated area, as the selected sample, and according to the present protocol, the low-fluoride acidic liquid dentifrice seems to lead to similar caries progression rates as conventional 1,100 ppm F toothpaste. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis, due to their genetic backgrounds. This study tested whether these differences are due to variations in water intake and/or F metabolism. A/J (susceptible to dental fluorosis) and 129P3/J mice (resistant) received drinking water containing 0, 10, or 50 ppm F. Weekly F intake, excretion and retention, and terminal plasma and femur F levels were determined. Dental fluorosis was evaluated clinically and by quantitative fluorescence (QF). Data were tested by two-way ANOVA. Although F intakes by the strains were similar, excretion by A/J mice was significantly higher due to greater urinary F excretion, which resulted in lower plasma and femur F levels. Compared with 129P3/J mice given 50 ppm F, significantly higher QF scores were recorded for A/J mice. In conclusion, these strains differ with respect to several features of F metabolism, and amelogenesis in the 129P3/J strain seems to be unaffected by high F exposure.
Resumo:
Objective: This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro. Methods: Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F(-)), sodium fluoride (NaF, 0.5% and 1% F(-)), each at pH 3.9 and 7.0, and stannous fluoride (SnF(2), 0.5% and 1% F-), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA. Results: Only the acidic 0.5% and 1% SnF(2) and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF(2) and the 1% AmF solutions no significant differences could be detected. Conclusion: At the same concentrations, acidic SnF(2) and AmF may be more effective than NaF to protect enamel against erosion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two-dimensional gel electrophoresis (2-DE) was used to better understand alterations in renal metabolism induced by fluoride (F). Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F for 60 days (n=6/group). Kidneys were collected for proteomic and histological (HE) analysis. After protein isolation, renal proteome profiles were examined using 2-DE and Colloidal Coomassie Blue staining. Protein spots with a 2-fold significant difference as detected by quantitative intensity analysis (image Master Platinum software) and t-test (p < 0.05) were excised and analyzed by MALDI-TOF MS (matrix assisted laser desorption ionization-time-of-flight mass spectrometry). The histological analysis revealed no damage in kidneys induced by F, except for a vascular congestion in the 50 ppm F group. Between control vs 50 ppm F, and control vs 5 ppm F groups, 12 and 6 differentially expressed proteins were detected, respectively. Six proteins, mainly related with metabolism, detoxification and housekeeping, were successfully identified. At the high F group, pyruvate carboxylase, a protein involved in the formation of oxaloacetate was found to be downregulated, while enoyl coenzyme A hydratase, involved in fatty acids oxidation, was found to be upregulated. Thus, proteomic analysis can provide new insights into the alterations in renal metabolism after F exposure, even in low doses. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
There has been no comparison of fluoride (F) intake by pre-school children receiving more traditional sources of systemic F. The aim of this study was to estimate the dietary F intake by children receiving F from artificially fluoridated water (AFW-Brazil, 0.6-0.8 mg F/L), naturally fluoridated water (NFW-Brazil, 0.6-0.9 mg F/L), fluoridated salt (FS-Peru, 180-200 mg F/Kg), and fluoridated milk (FM-Peru, 0.25 mg F). Children (n = 21-26) aged 4-6 yrs old participated in each community. A non-fluoridated community (NoF) was evaluated as the control population. Dietary F intake was monitored by the ""duplicate plate"" method, with different constituents (water, other beverages, and solids). F was analyzed with an ion-selective electrode. Data were tested by Kruskall-Wallis and Dunn`s tests (p < 0.05). Mean (+/- SD) F intake (mg/Kg b.w./day) was 0.04 +/- 0.01(b), 0.06 +/- 0.02(a,b), 0.05 +/- 0.02(a,b), 0.06 +/- 0.01(a), and 0.01 +/- 0.00(c) for AFW/NFW/FS/FM/NoF, respectively. The main dietary contributors for AFW/NFW and FS/FM/NoF were water and solids, respectively. The results indicate that the dietary F intake must be considered before a systemic method of fluoridation is implemented.