282 resultados para Phosphatidylglycerol hydrolase
Resumo:
Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [C-14]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [C-14]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains (C-14 atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosiiy of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.
Resumo:
Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2% recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40 degrees C and 5.0, respectively. The enzyme was fully stable from 40 degrees C to 60 degrees C during 1 hr. The activity was enhanced by Mn2+ (33-39%) and NH4+ (15%). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.
Resumo:
The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-L-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-L-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human. (C) 2012 Published by Elsevier Masson SAS.
Resumo:
CB1, TRPV1 and NO can regulate glutamate release and modify defensive behaviors in regions related to defensive behavior such as the dorsolateral periaqueductal gray (dIPAG). A possible interaction between the endocannabinoid and nitrergic systems in this area, however, has not been investigated yet. The objective of the present work was to verify if activation of CB1 or TRPV1 receptors could interfere in the flight responses induced in rats by the injection of SIN-1, an NO donor, into the dIPAG. The results showed that local administration of a low dose (5 pmol) of anandamide (AEA) attenuated the flight responses, measured by the total distance moved and maximum speed in an open arena, induced by intra-dIPAG microinjection of SIN-1 (150 nmol). URB597 (0.1 nmol), an inhibitor of anandamide metabolism, produced similar effects. When animals were locally treated with the CB1 receptor antagonist AM251 the effective AEA dose (5 pmol) increased, rather than decreased, the flight reactions induced by SIN1-1. Higher (50-200 nmol) doses of AEA were ineffective and even tended to potentiate the SIN-1 effect. The TRPV1 antagonist capsazepine (CPZ, 30 nmol) prevented SIN-1 effects and attenuated the potentiation of its effect by the higher (200 nmol) AEA dose. The results indicate that AEA can modulate in a dual way the pro-aversive effects of NO in the dIPAG by activating CB1 or TRPV1 receptors. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. Results Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA: GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA:GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. Conclusions Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.
Resumo:
Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity.
Resumo:
The growth and the metabolism of Bifidobacterium adolescentis MB 239 fermenting GOS, lactose, galactose, and glucose were investigated. An unstructerd unsegregated model for growth of B. adolescentis MB 239 in batch cultures was developed and kinetic parameters were calculated with a Matlab algorithm. Galactose was the best carbon source; lactose and GOS led to lower growth rate and cellular yield, but glucose was the poorest carbon source. Lactate, acetate and ethanol yields allowed calculation of the carbon fluxes toward fermentation products. Similar distribution between 3- and 2-carbon products was observed on all the carbohydrates (45 and 55%, respectively), but ethanol production was higher on glucose than on GOS, lactose and galactose, in decreasing order. Based on the stoichiometry of the fructose 6-phosphate shunt and on the carbon distribution among the products, ATP yield was calculated on the different carbohydrates. ATP yield was the highest on galactose, while it was 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondance among ethanol production, low ATP yields, and low biomass production was established demonstrating that carbohydrate preferences may result from different sorting of carbon fluxes through the fermentative pathway. During GOS fermentation, stringent selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were first to be consumed, and a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β-(1-4) galactosides can be hydrolysed before they are taken up. The physiology of Bifidobacterium adolescentis MB 239 toward xylooligosaccharides (XOS) was also studied and our attention was focused on an extracellular glycosyl-hydrolase (β-Xylosidase) expressed by a culture of B. adolescentis grown on XOS as sole carbon source. The extracellular enzyme was purified from the the supernatant, which was dialyzed and concentrated by ultrafiltration. A two steps purification protocol was developed: the sample was loaded on a Mono-Q anion exchange chromatography and then, the active fractions were pooled and β-Xylosidase was purified by gel filtration chromatography on a Superdex-75. The enzyme was characterized in many aspects. β- Xylosidase was an homo-tetramer of 160 kDa as native molecular mass; it was a termostable enzyme with an optimum of temperature at 53 °C and an optimum of pH of 6.0. The kinetics parameter were calculated: km = 4.36 mM, Vmax = 0.93 mM/min. The substrate specificity with different di-, oligo- and polysaccharides was tested. The reactions were carried out overnight at pH 7 and at the optimum of temperature and the carbohydrates hydrolysis were analyzed by thin layer chromatography (TLC). Only glycosyl-hydrolase activities on XOS and on xylan were detected, whereas sucrose, lactose, cellobiose, maltose and raffinose were not hydrolyzed. It’s clearly shown that β-Xylosidase activity was higher than the Xylanase one. These studies on the carbohydrate preference of a strain of Bifidobacterium underlined the importance of the affinity between probiotics and prebiotics. On the basis of this concept, together with Barilla G&R f.lli SpA, we studied the possibility to develop a functional food containing a synbiotic. Three probiotic strains Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 were studied to assess their suitability for utilization in synbiotic products on the basis of antioxidative activity, glutathione production, acid and bile tolerance, carbohydrates fermentation and viability in food matrices. Bile and human gastric juice resistance was tested in vitro to estimate the transit tolerance in the upper gastrointestinal tract. B. lactis and L. plantarum were more acid tolerant than S. thermophilus. All the strains resisted to bile. The growth kinetics on 13 prebiotic carbohydrates were determined. Galactooligosaccharides and fructo-oligosaccharides were successfully utilized by all the strains and could be considered the most appropriate prebiotics to be used in effective synbiotic formulations. The vitality of the three strains inoculated in different food matrices and maintained at room temperature was studied. The best survival of Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 was found in food chocolate matrices. Then an in vivo clinical trial was carried out for 20 healthy volunteers. The increase in faecal bifidobacteria and lactobacilli populations and the efficacy of the pre-prototype was promising for the future develop of potential commercial products.
Resumo:
Die Struktur des Haupt-Lichtsammlerproteins II (LHCIIb) höherer Pflanzen ist aufgrund kristallographischer Strukturanalysen zu 94% aufgeklärt. Dennoch ist es bislang nicht gelungen, die aminoterminale Region des Komplexes vollständig zu lokalisieren. In einem ersten Abschnitt dieser Dissertation sollte anhand einer vergleichenden Bindungsstudie mit Hilfe von in vitro - Rekonstitutionen des LHCIIb geklärt werden, ob es sich bei dem so genannten N - terminalen Trimerisierungsmotiv des Lichtsammlerproteins um eine Interaktionsstelle mit dem Phospholipid Phosphatidylglyzerin handelt. Dazu wurden mehrere vergleichende Lipidbindungsstudien an rekombinantem Wildtyp - Protein und verschiedenen LHCIIb - Trimerisierungsmotiv - Mutanten durchgeführt, die allerdings nicht zu reproduzierbaren Ergebnissen führten.Im zweiten Teil dieser Arbeit wurden intra- und intermolekulare Distanzmessungen an rekombinantem LHCIIb mit Hilfe der Elektronenspin - Resonanz - Spektroskopie durchgeführt. Dazu wurden zweifach mit einem Spin - Label markierte LHCIIb - Monomere und Trimere mit je einer Markierungsposition pro Monomer benutzt. Im Anschluss an die Messungen wurden die erhaltenen Distanzinformationen zusammen mit den bereits zugänglichen Kristallstrukturdaten des Komplexes für eine Modellierung der aminoterminalen Region des LHCIIb verwendet. Die resultierenden Modelle lassen den Schluss zu, dass es im LHCIIb - Trimer zu konformativen Restriktionen des Aminoterminus kommt. Dem entgegen findet man eine größere konformative Diversität in den vermessenen monomeren Komplexen.
Resumo:
Kanzerogene polyaromatische Kohlenwasserstoffe (PAKs), wie Benzo[a]pyren, besitzen eine Bay-Region mit ortho-kondensiertem Benzoring. Dadurch ist die enzymatische Bildung von Bay-Region-Dihydrodiolepoxiden (Oxiranylring in der sterisch abgeschirmten Molekülbucht) möglich, die als ultimal kanzerogene Metaboliten der PAKs gelten. Diese lösen durch DNA-Modifikation Primärläsionen aus, die, sofern sie nicht enzymatisch repariert werden, bei der DNA-Replikation Fehler verursachen (Mu-tationen). Der Mehrstufenprozeß der Kanzerogenese (Promotion und Progression) führt schließlich zur neoplastischen Entartung der Zelle. Benzo[ghi]perylen (BghiP) repräsentiert eine Gruppe von PAKs, die keine „klassische“ Bay-Region besitzen und daher keine vicinalen Dihydrodiolepoxiden bilden können. Trotzdem ist BghiP mutagen, z. B. in den Stämmen TA98 und TA100 von Salmonella typhimurium (1,3- bzw. 4,3 his+-Revertanten/nmol) nach metabolischer Aktivierung mit der postmitochondrialen Fraktion von Ratten nach Behandlung mit 3-Methylcholanthren. Hemmung der mikrosomalen Epoxidhydrolase (mEH) mit 1,1,1-Trichlor-2-propenoxid (TCPO) steigert die bakterielle Mutagenität von BghiP im Stamm TA98 um das 4-fache, was Arenoxide als ultimale Mutagene wahrscheinlich macht. Dieses Ergebnis wird au-ßerdem durch Untersuchung der DNA-Bindung mit dem Verfahren des 32P-Postlabelings bestätigt (Dr. Fickler, Institut für Toxikologie, Universität Mainz). Danach bildete mikrosomal aktiviertes BghiP drei Addukte (ein Hauptaddukt, zwei Nebenaddukte), die durch Hemmung der mEH mit TCPO verstärkt wurden (das Hauptaddukt um 29%). Um den für die bakterielle Mutagenität von BghiP verantwortlichen Metaboliten zu identifizieren, wurde die mikrosomale Biotransformaton von BghiP aufgeklärt. Umsetzung von BghiP mit Lebermikrosomen von Ratten nach Behandlung mit Aroclor 1254 lieferte 17 mit Ethylacetat extrahierbare Metaboliten. Zwölf dieser Metaboliten konnten durch eine Kombination von chromatographischen, spektroskopi-schen und biochemischen Methoden identifiziert werden. Daraus ergeben sich zwei Biotransformati-onswege: Weg I beginnt mit einem Angriff von Cytochrom P450-abhängigen Monooxygenasen an Position 7 und der Bildung des 7-Phenols. Dieses wird dann in das 7,8- bzw. 7,10-Diphenol überführt, die schließlich zu den mehrkernigen Chinonen an der 7,8- bzw. 7,10-Position oxidiert werden. Im Bio-transformationsweg II werden die K-Regionen von BghiP durch Cytochrom P450 funktionalisiert. Zu-nächst entstehen das auf indirektem Weg identifizierte 3,4-Oxid und das 3,4,11,12-Bisoxid, die in mikrosomalen Umsetzungen von BghiP nur nach Hemmung der mEH gebildet werden. Enzymatische Hydrolyse des 3,4-Oxides ergibt das trans-3,4-Dihydrodiol, das zum 3,4-Chinon oxidiert wird. Ebenso entsteht aus dem 3,4,11,12-Bisoxid das trans-3,4-trans-11,12-Bisdihydrodiol, aus dem durch Oxidati-on das trans-3,4-Dihydrodiol-11,12-Chinon hervorgeht. Untersuchung der stereoselektiven enzymati-schen Bildung der K-Region-trans-Di¬hydrodiole ergaben eine präferentielle Entstehung der 3R,4R- bzw. 3R,4R,11R,12R-Enantiomere. Untersuchungen der bakteriellen Mutagenität der Hauptmetaboliten 3,4-Dihydrodiol und dem 7-Phenol machte deutlich, dass beide Biotransformationswege I und II von BghiP zur bakteriellen Mutagenität beitragen. Das 7-Phenol aus Weg I ist ein proximales Mutagen, was auch von Phenolen anderer PAKs bekannt ist. Das 3,4-Dihydrodiol aus Weg II wird so schwach zu Mutagenen aktiviert, dass dem vermutlich gebildete 3,4-Dihydrodiol-11,12-oxid keine große Bedeutung als ultimales Mutagen von BghiP zukommt. Die Bestimmung der direkten mutagenen Aktivität (ohne metabolische Aktivierung) der mutmaßlich ultimal mutagenen Arenoxide von BghiP ergab, dass die des 3,4,11,12-Bisarenoxides sehr gering war (1,3 his+-Revertanten/nmol im Stamm TA98). Das 3,4-Oxid hingegen bewirkte einen deutlichen gentoxischen Effekt in den Stämmen TA98 und TA100 (5,5 bzw. 10 his+-Revertanten/nmol). Dies wurde durch die Bestimmung der DNA-Bindung mit dem 32P-Postlabeling, in dem das 3,4-Oxid für das Hauptaddukt von BghiP verantwortlich gemacht werden konnte, bestätigt. Daher kommt dem 3,4-Oxid als ultimales Mutagen die größte Bedeutung für die Gentoxizität von BghiP zu. Die Ergebnisse dieser Arbeit lassen bei PAKs ohne Bay-Region auf Arenoxide schließen, die eine notwendige Voraussetzung für DNA-Bindung und Mutagenität sind.
Resumo:
In der vorliegenden Arbeit werden verschiedene Enzyme des Ajmalin-Biosynthesewegs aus der Arzneipflanze Rauvolfia serpentina charakterisiert. Dabei handelt es sich einerseits um die Vomilenin-Reduktase und die 2β-(R)-1.2-Dihydrovomilenin-Reduktase. Es wurden Versuche unternommen, diese Enzyme heterolog zu exprimieren. Eine aktive Expression konnte nicht durchgeführt werden, was mit großer Wahrscheinlichkeit auf Modifikationen in der Ursprungspflanze zurückzuführen ist. Allerdings bestehen auch Zweifel, ob es sich bei den Volllängenklonen um die cDNAs der Reduktasen handelte. Zum anderen sollte eine Strukturaufklärung der Vinorin-Synthase im Komplex mit Liganden vorgenommen werden. Die erhaltenen Proteinkristalle stellten sich als derart empfindlich gegenüber Schwankungen ihrer Umgebung und dem Eindringen von Liganden in den Kristall dar, dass eine erfolgreiche Komplexierung und strukturelle Beschreibung durch Röntgenstrukturanalyse nicht möglich war. Weiterhin wurden Mutagenesestudien mit der Vinorin-Synthase durchgeführt. Eine Asparaginsäure bildet eine Salzbrücke mit einem Arginin. Alle durchgeführten Mutationen dieser Asparaginsäure führten zu einem absoluten Aktivitätsverlust. Eine Funktion des Asparagins 277, als mitverantwortliche Aminosäure zur Bindung des Co-Substrats Acetyl-CoA, konnte anhand der Mutagenesestudien ausgeschlossen werden. Weiterhin ist es erstmals gelungen die Polyneuridinaldehyd-Esterase aus Rauvolfia serpentina zu kristallisieren. Schließlich konnte die dreidimensionale Struktur der Polyneuridinaldehyd-Esterase aufgeklärt werden. Es folgte eine Beschreibung struktureller Eigenschaften der Polyneuridinaldehyd-Esterase im Vergleich zu einem Modell, welches durch ein „Molecular Modelling“ erstellt wurde.
Resumo:
Background. Abiraterone acetate is a potent inhibitor of cytochrome P450 17 α-hydrolase (CYP17A1) that causes a reduction in the synthesis of testosterone in the adrenal glands, testes and tumor microenvironment. Blocking androgen production, abiraterone has been shown to prolong progression-free survival (PFS) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (CRPC) previously submitted to chemotherapy. The aim of our study was to verify the role of single nucleotide polymorphisms (SNPs) in predicting clinical outcome in CRPC patients treated with abiraterone after chemotherapy. Methods. We analyzed 48 CRPC consecutive patients treated with abiraterone after at least one chemotherapeutic regimen with docetaxel. DNA was extracted from peripheral blood and genotyped for four polymorphisms in the CYP17A1 gene (rs743572, rs10883783, rs17115100, rs284849). PFS and OS survival curves were used to identify statistical associations between haplotypes and clinical outcome. Results. Forty-eight Caucasian patients with metastatic CRPC treated with abiraterone were genotyped for polymorphisms in the CYP17A1 gene. All samples were evaluable for both sequencing and TaqMan Genotyping assay. The CRPC patients treated with abiraterone had a median PFS and OS of 7.6 months (95% CI: 4.3-10.5) and 17.6 months (95% CI: 10.5-19.0), respectively Statistical analyses highlighted a difference approaching statistical significance (log-rank test p = 0.0534) between rs10883783 and PFS. Other polymorphisms were not associated with a benefit from treatment with abiraterone. Conclusions. In our case series of 48 treated patients, rs10883783 only was identified as a possible predictive marker, results showing a trend toward statistical significance. Further analysis of this polymorphism is needed in larger series of patients to confirm our findings.
Resumo:
In this thesis is described the design and synthesis of potential agents for the treatment of the multifactorial Alzheimer’s disease (AD). Our multi-target approach was to consider cannabinoid system involved in AD, together with classic targets. In the first project, designed modifications were performed on lead molecule in order to increase potency and obtain balanced activities on fatty acid amide hydrolase and cholinesterases. A small library of compounds was synthesized and biological results showed increased inhibitory activity (nanomolar range) related to selected target. The second project was focused on the benzofuran framework, a privileged structure being a common moiety found in many biologically active natural products and therapeutics. Hybrid molecules were designed and synthesized, focusing on the inhibition of cholinesterases, Aβ aggregation, FAAH and on the interaction with CB receptors. Preliminary results showed that several compounds are potent CB ligands, in particular the high affinity for CB2 receptors, could open new opportunities to modulate neuroinflammation. The third and the fourth project were carried out at the IMS, Aberdeen, under the supervision of Prof. Matteo Zanda. The role of the cannabinoid system in the brain is still largely unexplored and the relationship between the CB1 receptors functional modification, density and distribution and the onset of a pathological state is not well understood. For this reasons, Rimonabant analogues suitable as radioligands were synthesized. The latter, through PET, could provide reliable measurements of density and distribution of CB1 receptors in the brain. In the fifth project, in collaboration with CHyM of York, the goal was to develop arginine analogues that are target specific due to their exclusively location into NOS enzymes and could work as MRI contrasting agents. Synthesized analogues could be suitable substrate for the transfer of polarization by p-H2 molecules through SABRE technique transforming MRI a more sensitive and faster technique.
Resumo:
Die S-adenosyl-L-Homocysteinhydrolase (AHCY)-Defizienz ist eine seltene autosomal rezessive Erbkrankheit, bei der Mutationen im AHCY-Gen die Funktionsfähigkeit des kodierten Enzyms beeinträchtigen. Diese Krankheit führt zu Symptomen wie Entwicklungsverzögerungen, mentaler Retardierung und Myopathie. In der vorliegenden Arbeit wurde der Einfluss der AHCY-Defizienz auf die Methylierung der DNA in Blutproben und Fibroblasten von Patienten mit AHCY-Defizienz, sowie in HEK293- und HepG2-Zelllinien mit AHCY-Knockdown untersucht. Der gesamtgenomische Methylierungsstatus wurde mit Hilfe des MethylFlash ™ Methylated DNA Quantification Kit (Epigentek) bei drei Patienten-Blutproben festgestellt. In den Blutproben von sieben Patienten und Fibroblasten von einem Patienten wurde die Methylierung von DMRs sieben geprägter Gene (GTL2, H19, LIT1, MEST, NESPAS, PEG3, SNRPN) und zwei repetitiver Elemente (Alu, LINE1) mittels Bisulfit-Pyrosequenzierung quantifiziert und durch High Resolution Melting-Analyse bestätigt. Zusätzlich wurde eine genomweite Methylierungsanalyse mit dem Infinium® HumanMethylation450 BeadChip (Illumina) für vier Patientenproben durchgeführt und die Expression von AHCY in Fibroblasten mittels Expressions-qPCR und QUASEP-Analyse untersucht. Die Methylierungsanalysen ergaben eine Hypermethylierung der gesamtgenomischen DNA und stochastische Hypermethylierungen von DMRs geprägter Gene bei einigen Patienten. Die HEK293- und HepG2-Zelllinien wiesen dagegen hauptsächlich stochastische Hypomethylierungen an einigen DMRs geprägter Gene und LINE1-Elementen auf. Die genomweite Methylierungsarray-Analyse konnte die Ergebnisse der Bisulfit-Pyrosequenzierung nicht bestätigen. Die Expressionsanalysen der AHCY-defizienten Fibroblasten zeigten eine verminderte Expression von AHCY, wobei beide Allele etwa gleich stark transkribiert wurden. Die Ergebnisse deuten darauf hin, dass die AHCY-Defizienz eine gute Modellerkrankung für die Untersuchung biologischer Konsequenzen von Methylierungsstörungen im Rahmen der Epigenetik-Forschung sein könnte. Sie ist unseres Wissens die erste monogene Erkrankung mit symptomaler DNA-Hypermethylierung beim Menschen.
Resumo:
The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.