948 resultados para Passive immunity
Resumo:
Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p= 0.0005 and p= 0.004) and anti-gliadin (p= 0.002 and p= 0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p= 0.0001 and p= 0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by gamma III gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals.
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
Using data collected simultaneously from a trawl and a hydrophone, we found that temporal and spatial trends in densities of juvenile Atlantic croaker (Micropogonias undulatus) in the Neuse River estuary in North Carolina can be identified by monitoring their sound production. Multivariate analysis of covariance (MA NCOVA) revealed that catch per unit of effort (CPUE) of Atlantic croaker had a significant relationship with the dependent variables of sound level and peak frequency of Atlantic croaker calls. Tests of between-subject correspondence failed to detect relationships between CPUE and either of the call parameters, but statistical power was low. Williamson’s index of spatial overlap indicated that call detection rate (expressed by a 0–3 calling index) was correlated in time and space with Atlantic croaker CPUE. The correspondence between acoustic parameters and trawl catch rates varied by month and by habitat. In general, the calling index had a higher degree of overlap with this species’ density than did the received sound level of their calls. Classification and regression tree analysis identified calling index as the strongest correlate of CPUE. Passive acoustics has the potential to be an inexpensive means of identifying spatial and temporal trends in abundance for soniferous fish species.
Resumo:
[EN] A new concept for fluid flow manipulation in microfluidic paper-based analytical devices ( µPADs) is presented by introducing ionogel materials as passive pumps. µPADs were fabricated using a new doubleside contact stamping process and ionogels were precisely photopolymerised at the inlet of the µPADs.The ionogels remain mainly on the surface of the paper and get absorbed in the superficial paper-fibers allowing for the liquid to flow from the ionogel into the paper easily. As a proof of concept the fluid flow and mixing behaviour of two different ionogels µPADs were compared with the non-treated µPADs.It was demonstrated that both ionogels highly affect the fluid flow by delaying the flow due to their different physical and chemical properties and water holding capacities.