938 resultados para Parthenogenesis in plants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant genomes are extremely complex. Myriad factors contribute to their evolution and organization, as well as to the expression and regulation of individual genes. Here we present investigations into several such factors and their influence on genome structure and gene expression: the arrangement of pairs of physically adjacent genes, retrotransposons closely associated with genes, and the effect of retrotransposons on gene pair evolution. All sequenced plant genomes contain a significant fraction of retrotransposons, including that of rice. We investigated the effects of retrotransposons within rice genes and within a 1 kb putative promoter region upstream of each gene. We found that approximately one-sixth of all rice genes are closely associated with retrotransposons. Insertions within a gene’s promoter region tend to block gene expression, while retrotransposons within genes promote the existence of alternative splicing forms. We also identified several other trends in retrotransposon insertion and its effects on gene expression. Several studies have previously noted a connection among genes between physical proximity and correlated expression profiles. To determine the degree to which this correlation depends on an exact physical arrangement, we studied the expression and interspecies conservation of convergent and divergent gene pairs in rice, Arabidopsis, and Populus trichocarpa. Correlated expression among gene pairs was quite common in all three species, yet conserved arrangement was rare. However, conservation of gene pair arrangement was significantly more common among pairs with strongly correlated expression levels. In order to uncover additional properties of gene pair conservation and rearrangement, we performed a comparative analysis of convergent, divergent, and tandem gene pairs in rice, sorghum, maize, and Brachypodium. We noted considerable differences between gene pair types and species. We also constructed a putative evolutionary history for each pair, which led to several interesting discoveries. To further elucidate the causes of gene pair conservation and rearrangement, we identified retrotransposon insertions in and near rice gene pairs. Retrotransposon-associated pairs are less likely to be conserved, although there are significant differences in the possible effect of different types and locations of retrotransposon insertions. The three types of gene pair also varied in their susceptibility to retrotransposon-associated evolutionary changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tests two general and independent hypotheses with the basic assumption that phytoactive secondary compounds produced by plants evolved primarily as plant defences against competitor plant species. The first hypothesis is that the production and main way of release of phytoactive compounds reflect an adaptive response to climatic conditions. Thus, higher phytoactivity by volatile compounds prevails in plants of hot, dry environments, whereas higher phytoactivity by water-soluble compounds is preponderant in plants from wetter environments. The second hypothesis is that synergy between plant phytoactive compounds is widespread, due to the resulting higher energy efficiency and economy of resources. The first hypothesis was tested on germination and early growth of cucumber treated with either water extracts or volatiles from leaves or vegetative shoot tops of four Mediterranean-type shrubs. The second hypothesis was tested on germination of subterranean clover treated with either water extracts of leaves or vegetative shoot tops of one tree and of three Mediterranean-type shrubs or with each of the three fractions obtained from water extracts. Our data do not support either hypotheses. We found no evidence for higher phytoactivity in volatile compounds released by plants that thrive in hot, dry Mediterranean-type environments. We also found no evidence for the predominance of synergy among the constituents of fractions. To the contrary, we found either antagonism or no interaction of effects among allelopathic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of time of planting and plant size on the performance of ‘Festival’ and ‘Florida Fortuna’ strawberry (Fragaria ×ananassa) plants was studied at Nambour in southeastern Queensland, Australia, over 2 years. The main objective of the work was to determine whether small plants yielded proportionally less than large plants as planting was delayed. First, bare-rooted transplants of ‘Festival’ were divided into small (crown diameters ranging from 6 to 10 mm) or large plants (10 to 17 mm) and planted in late March, mid-April, or late April. Second, transplants of ‘Florida Fortuna’ were divided into small (5 to 8 mm) or large plants (8 to 17 mm) and planted in early April, mid-April, or early May. The early planting for each cultivar corresponded with the time that the transplants are first available from commercial strawberry nurseries. Yields were generally greater in plants planted in late March/early April compared with plants planted later. Differences in yield between the small and large plants were consistent across the different times of planting, with the small plants always having lower yields. Small transplants are an issue for the productivity of strawberry fields in this environment whether they are planted early or late. Producers should consider paying a premium for large transplants delivered early in the season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable evidence that children in modern society are losing
their contact with nature and, more precisely, with green plants. Is this also the case in Finland, a northern country famous for its forests and wild nature? This study examines the relationship of 9- to 10-year-old Finnish schoolchildren with the green environment and plants. The data were gathered by a questionnaire
comprising structured and open-ended questions. The focus of the research was on two comparisons: first, on the nature and child relationship in rural and urban neighborhoods and, second, among boys and girls. Participants in the study amounted to a total of 76 children, 42 in the Helsinki suburb area and 34 in Paltamo. The results suggested that the children in rural surroundings had closer contact with nature than their urban associates. For example, the children of Paltamo reported to know the trees better, and considered human beings to be part of nature more often (100% vs. 76% of the pupils in Helsinki, P = 0,003). Similarly, the results showed that girls in the study (N = 48) were more interested in plants than boys (N = 28). For the girls, the beauty and joy of plants was important, whereas the boys appreciated plants as the source of life. After the pre-questioning, the children of Helsinki participated in an in-class horticultural intervention and 10 days later, answered a similar questionnaire again. The results of the open-ended questions revealed that equally to children in other Western countries, Finnish children may also be in danger of losing their direct contact with the natural environment. It was common to pass free time in organized sports such as hockey or football (boys), or by just walking and talking with friends (girls). Rural children told that they still built huts, pick berries, and climb trees, whereas urban children played in parks and city groves. The results suggest that it is essential to research
further the children’s own experiences if we are to understand, and subsequently, to enhance, the crucial role of the green environment in their lives. Horticultural interventions can be effective starting points to add to children’s knowledge, affection, and interest toward greenery, but it is highly recommended that they take place outdoors rather than indoors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In plants, nitrate (NO(3)(-)) nutrition gives rise to a natural N isotopic signature (delta(15)N), which correlates with the delta(15)N of the N source. However, little is known about the relationship between the delta(15)N of the N source and the (14)N/(15)N fractionation in plants under ammonium (NH(4)(+)) nutrition. When NH(4)(+) is the major N source, the two forms, NH(4)(+) and NH(3), are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH(3) (g) and NH(4)(+)(aq) which drives to a different delta(15)N. Nine plant species with different NH(4)(+)-sensitivities were cultured hydroponically with NO(3)(-) or NH(4)(+) as the sole N sources, and plant growth and delta(15)N were determined. Short-term NH(4)(+)/NH(3) uptake experiments at pH 6.0 and 9.0 (which favours NH(3) form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH(4)(+) and NH(3). -- Results: Several NO(3)(-)-fed plants were consistently enriched in (15)N, whereas plants under NH(4)(+) nutrition were depleted of (15)N. It was shown that more sensitive plants to NH(4)(+) toxicity were the most depleted in (15)N. In parallel, N-deficient pea and spinach plants fed with (15)NH(4)(+) showed an increased level of NH(3) uptake at alkaline pH that was related to the (15)N depletion of the plant. Tolerant to NH(4)(+) pea plants or sensitive spinach plants showed similar trend on (15)N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO(3) as control discarded that the differences observed arise from pH detrimental effects. -- Conclusions: This article proposes that the negative values of delta(15)N in NH(4)(+)-fed plants are originated from NH(3) uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH(4)(+)/NH(3) toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH(4)(+) may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present experiment, we studied the interaction between copper (Cu) and iron (Fe) in strawberry plants grown in nutrient solutions containing different concentrations of Fe. Plants grown in the absence of iron (Fe0) had the characteristic symptoms of Fe deficiency, with smaller chlorotic leaves, less biomass, acidification of the nutrient solution, and roots that were smaller and less ramified, while no symptoms of Fe deficiency were observed in plants grown with Fe. A greater amount of Cu was found in roots of chlorotic plants than in those grown with Fe, while plants grown with 20M of Fe (Fe20) in the nutrient solution had a greater amount of Fe compared with plants from the other treatments. Chlorotic plants (Fe0) and plants grown with the greatest level of Fe (Fe20) had a greater root ferric chelate reductase (FC-R; EC 1.16.1.17) activity compared with the other treatments with 5 or 10M Fe in the nutrient solution. The same pattern was obtained for relative FC-R mRNA concentration and for the sum of Fe and Cu contents in shoots (leaves plus crowns). The DNA obtained from amplification of the FC-R mRNA was cloned and several of the inserts analysed by single strand confirmation polymorphism (SSCP). Although there were different SSCP patterns in the Fe20 treatment, all the inserts that were sequenced were very similar, excluding the hypothesis of more than one FC-R mRNA species being present. The results suggest that Cu as well as Fe is involved in FC-R expression and activity, although the mechanism involved in this regulation is unknown so far. Both small contents of Fe and Cu in plants led to an over-expression of the FC-R gene and enhanced FC-R activity in strawberry roots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grafting is a technique that may affect plant tolerance to iron chlorosis in plants cultivated for their fruit. Therefore, the objective of this study was to evaluate the tolerance of non-grafted quince seedlings and pear grafted onto quince plants cultivated in pots with alkaline soil. The experiment was conducted in a greenhouse at the University of Cordoba, Spain, in pots (3 L) filled with alkaline soil, with one plant per pot. The treatments consisted of two genotypes, quince (Cydonia oblonga Mill) semi-woody rooted cuttings, cultivar BA29, and pear (Pyrus Communis L.), cultivar Ercolini, grafted onto quince cultivar BA29 (rootstock), and two nutrient solutions with and without iron (80 mu M Fe-EDDHA) arranged in a completely random design with eight repetitions. Each pot received 250 mL of the nutrient solution on June 3rd, 2010. Chlorophyll indirect measurements and the main stem length were evaluated for six weeks after the commencement of the treatments. During the last week, the main stem dry matter weight and the leaf total iron content were determined. It was found that grafting pear seedlings onto quince rootstock resulted in a higher tolerance to iron deficiency than when quince was not grafted. Non-grafted quince plants without iron in the nutrient solution, compared to the results with its application, showed low SPAD (Soil-Plant Analyses Development) values and resulted in plants with a lower leaf iron content and lower dry matter production; however, decreased seedling stem growth was observed only in the last week of cultivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to achieve a better understanding about the foraging behavior of leaf-cutter ant (Atta sexdens rubropilosa Forel) workers with respect to defoliation sites in plants. To accomplish that, artificial plants 70 cm in height were prepared and divided into four levels (heights), having natural plant leaves attached to them. Evaluations during the bioassays included the number of leaves dropped by the ants, as well as the percentage of plant mass removed. In all replicates, it became evident that the most exploited plant site is the apical region, which significantly differed from other plant levels.