997 resultados para Pancreatic enzyme preparation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Movement-related potentials (MRPs) reflect increasing cortical activity related to the preparation and execution of voluntary movement. Execution and preparatory components may be separated by comparing MRPs recorded from actual and imagined movement. Imagined movement initiates preparatory processes, but not motor execution activity. MRPs are maximal over the supplementary motor area (SMA), an area of the cortex involved in the planning and preparation of movement. The SMA receives input from the basal ganglia, which are affected in Huntington's disease (HD), a hyperkinetic movement disorder. In order to further elucidate the effects of the disorder upon the cortical activity relating to movement, MRPs were recorded from ten HD patients, and ten age-matched controls, whilst they performed and imagined performing a sequential button-pressing task. HD patients produced MRPs of significantly reduced size both for performed and imagined movement. The component relating to movement execution was obtained by subtracting the MRP for imagined movement from the MRP for performed movement, and was found to be normal in HD. The movement preparation component was found by subtracting the MRP found for a control condition of watching the visual cues from the MRP for imagined movement. This preparation component in HD was reduced in early slope, peak amplitude, and post-peak slope. This study therefore reported abnormal MRPs in HD. particularly in terms of the components relating to movement preparation, and this finding may further explain the movement deficits reported in the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement. (C) 2002 Elsevier Science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of beta-fructofuranosidases by Aspergillus niveus, cultivated under submerged fermentation using agroindustrial residues, was investigated. The highest productivity of beta-fructofuranosidases was obtained in Khanna medium supplemented with sugar cane bagasse as carbon source. Glucose enhanced the production of the intracellular enzyme, whereas that of the extracellular one was decreased. The intracellular beta-fructofuranosidase was a trimeric protein of approximately 141 kDa (gel filtration) with 53.5% carbohydrate content, composed of 57 kDa monomers (SDS-PAGE). The optimum temperature and optimum pH were 60 degrees C and 4.5, respectively. The purified enzyme showed good thermal stability and exhibited a half-life of 53 min at 60 degrees C. beta-Fructofuranosidase activity was slightly activated by Cu(2+), Mn(2+), Mg(2+), and Na(+) at 1 mM concentration. The enzyme hydrolyzed sucrose, raffinose, and inulin, with K(d) values of 5.78 mM, 5.74 mM, and 1.74 mM, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4-5 days in liquid medium at 40A degrees C, under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60-70A degrees C. The enzymes were stable for 30 min at 60A degrees C, maintaining 95-98% of the initial activity. After 1 h at this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5-5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0-8.0, while the enzyme from A. niveus was more stable at pH 4.5-6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the possibilities offered by microfluidic structures for the production of polymeric microspheres, using a process based upon the production of an emulsion. LTCC (Low Temperature Co-fired Ceramics) micromixers have been used for the preparation of polymeric microspheres. The effect of the geometry of the micromixers has been studied, with a specific focus on the size of the microspheres. as well as the control release properties of a model protein loaded within these microspheres. (C) 2008 Published by Elsevier B.V.