963 resultados para PROTEOLYTIC ENZYMES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for proteolytic bacteria in the exacerbation of influenza virus has been shown in natural hosts such as pigs and humans. Four hundred seven samples were collected from the respiratory tract of individuals presenting clinical manifestations, during influenza season (2003-2005) in São Paulo City. The aim of this study was to evaluate the incidence of determined bacteria co-infecting virus in human respiratory tract. Tests, such as bacteriological, immunofluorescence (IF), RT/PCR and hemagglutination (HA) were used for bacterial and viral investigation. Thirty seven (9.09%) positive for influenza virus were screened by IF. The RT/PCR confirmed the presence of influenza virus in these samples. Bacterial and agar casein tests demonstrated that 18 (48.64%) individuals were infected with proteolytic bacteria such as Staphylococcus spp., Streptococcus spp. and Pseudomonas spp. Among these samples, 13 (35.13%) were co-infected with influenza A virus. Influenza type B, co-infecting bacteria were found in five (13.51%) samples. In vitro the S. aureus protease increased the influenza HA titer after contact for 30 min at 25 ºC. Results revealed the occurrence of co-infection with proteolytic bacteria and influenza in the evaluated individuals. This finding corroborates that virus versus bacteria synergism could be able to potentiate respiratory infection, increasing damage to hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gelatinase, urease, lipase, phospholipase and DNase activities of 11 chromoblastomycosis agents constituted by strains of Fonsecaea pedrosoi, F. compacta, Phialophora verrucosa, Cladosporium carrionii, Cladophialophora bantiana and Exophiala jeanselmei were analyzed and compared. All strains presented urease, gelatinase and lipase activity. Phospholipase activity was detected only on five of six strains of F. pedrosoi. DNase activity was not detected on the strains studied. Our results indicate that only phospholipase production, induced by egg yolk substrate, was useful for the differentiation of the taxonomically related species studied, based on their enzymatic profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:443–460 DOI 10.1007/s00775-010-0741-z

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acc. Chem. Res., 2006, 39 (10), pp 788–796 DOI: 10.1021/ar050104k

Relevância:

20.00% 20.00%

Publicador:

Resumo:

J Biol Inorg Chem (2004) 9: 791–799 DOI 10.1007/s00775-004-0573-9

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação Apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ciências da Conservação, especialização em Pintura

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry, Structural Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide valorization, will not only help to relieve the greenhouse effect but might also allow us to transform it in value-added chemicals that will help overcoming the energy crisis. To accomplish this goal, more research that focus on sequestering CO2 and endeavors through a carbon-neutral or carbon-negative strategy is needed in order to handle with the dwindling fossil fuel supplies and their environmental impact. Formate dehydrogenases are a promising means of turning CO2 into a biofuel that will allow for a reduction of greenhouse gas emissions and for a significant change to the economic paramount. The main objective of this work was to assess whether a NAD+-independent molybdenum-containing formate dehydrogenase is able to catalyze the reduction of CO2 to formate. To achieve this, a molybdenum-containing formate dehydrogenase was isolated from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774. Growth conditions were found that allowed for a greater cellular mass recovery and formate dehydrogenase expression. After growth trials, kinetic assays for formate oxidation and CO2 reduction were performed and kinetic parameters determined. For the formate oxidation reaction, a KM of 49 μM and a turnover constant of 146 s-1 were determined. These kinetic parameters are in agreement with those determined by Mota, et al. (2011). Finally, we found that this molybdenum-containing enzyme was able to catalyze the reduction of CO2 to formate with a turnover constant of 4.6 s-1 and a KM of 13 μM. For the first time a NAD+-independent molybdenum-containing formate dehydrogenase was found to catalyze CO2 reduction, allowing its use as a biocatalyst in energetically efficient CO2 fixation processes that can be directed towards bioremediation or as an alternative and renewable energy source. Characterizing these enzymes may lead to the development of more efficient synthetic catalysts, make them readily available and more suited for practical applications.