977 resultados para Output variables
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
The recent floods in south-east Queensland have focused policy, academic and community attention on the challenges associated with severe weather events (SWE), specifically pre-disaster preparation, disaster-response and post-disaster community resilience. Financially, the cost of SWE was $9 billion in the 2011 Australian Federal Budget (Swan 2011); psychologically and emotionally, the impact on individual mental health and community wellbeing is also significant but more difficult to quantify. However, recent estimates suggest that as many as one in five will subsequently experience major emotional distress (Bonanno et al. 2010). With climate change predicted to increase the frequency and intensity of a wide range of SWE in Australia (Garnaut 2011; The Climate Institute 2011), there is an urgent and critical need to ensure that the unique psychological and social needs of more vulnerable community members - such as older residents - are better understood and integrated into disaster preparedness and response policy, planning and protocols. Navigating the complex dynamics of SWE can be particularly challenging for older adults and their disaster experience is frequently magnified by a wide array of cumulative and interactive stressors, which intertwine to make them uniquely vulnerable to significant short and long-term adverse effects. This current article provides a brief introduction to the current literature in this area and highlights a gap in the research relating to communication tools during and after severe weather events.
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
This paper proposes a method for designing set-point regulation controllers for a class of underactuated mechanical systems in Port-Hamiltonian System (PHS) form. A new set of potential shape variables in closed loop is proposed, which can replace the set of open loop shape variables-the configuration variables that appear in the kinetic energy. With this choice, the closed-loop potential energy contains free functions of the new variables. By expressing the regulation objective in terms of these new potential shape variables, the desired equilibrium can be assigned and there is freedom to reshape the potential energy to achieve performance whilst maintaining the PHS form in closed loop. This complements contemporary results in the literature, which preserve the open-loop shape variables. As a case study, we consider a robotic manipulator mounted on a flexible base and compensate for the motion of the base while positioning the end effector with respect to the ground reference. We compare the proposed control strategy with special cases that correspond to other energy shaping strategies previously proposed in the literature.
Resumo:
Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
Introduction Given the known challenges of obtaining accurate measurements of small radiation fields, and the increasing use of small field segments in IMRT beams, this study examined the possible effects of referencing inaccurate field output factors in the planning of IMRT treatments. Methods This study used the Brainlab iPlan treatment planning system to devise IMRT treatment plans for delivery using the Brainlab m3 microMLC (Brainlab, Feldkirchen, Germany). Four pairs of sample IMRT treatments were planned using volumes, beams and prescriptions that were based on a set of test plans described in AAPM TG 119’s recommendations for the commissioning of IMRT treatment planning systems [1]: • C1, a set of three 4 cm volumes with different prescription doses, was modified to reduce the size of the PTV to 2 cm across and to include an OAR dose constraint for one of the other volumes. • C2, a prostate treatment, was planned as described by the TG 119 report [1]. • C3, a head-and-neck treatment with a PTV larger than 10 cm across, was excluded from the study. • C4, an 8 cm long C-shaped PTV surrounding a cylindrical OAR, was planned as described in the TG 119 report [1] and then replanned with the length of the PTV reduced to 4 cm. Both plans in each pair used the same beam angles, collimator angles, dose reference points, prescriptions and constraints. However, one of each pair of plans had its beam modulation optimisation and dose calculation completed with reference to existing iPlan beam data and the other had its beam modulation optimisation and dose calculation completed with reference to revised beam data. The beam data revisions consisted of increasing the field output factor for a 0.6 9 0.6 cm2 field by 17 % and increasing the field output factor for a 1.2 9 1.2 cm2 field by 3 %. Results The use of different beam data resulted in different optimisation results with different microMLC apertures and segment weightings between the two plans for each treatment, which led to large differences (up to 30 % with an average of 5 %) between reference point doses in each pair of plans. These point dose differences are more indicative of the modulation of the plans than of any clinically relevant changes to the overall PTV or OAR doses. By contrast, the maximum, minimum and mean doses to the PTVs and OARs were smaller (less than 1 %, for all beams in three out of four pairs of treatment plans) but are more clinically important. Of the four test cases, only the shortened (4 cm) version of TG 119’s C4 plan showed substantial differences between the overall doses calculated in the volumes of interest using the different sets of beam data and thereby suggested that treatment doses could be affected by changes to small field output factors. An analysis of the complexity of this pair of plans, using Crowe et al.’s TADA code [2], indicated that iPlan’s optimiser had produced IMRT segments comprised of larger numbers of small microMLC leaf separations than in the other three test cases. Conclusion: The use of altered small field output factors can result in substantially altered doses when large numbers of small leaf apertures are used to modulate the beams, even when treating relatively large volumes.
Accelerometer data reduction : a comparison of four reduction algorithms on select outcome variables
Resumo:
Purpose Accelerometers are recognized as a valid and objective tool to assess free-living physical activity. Despite the widespread use of accelerometers, there is no standardized way to process and summarize data from them, which limits our ability to compare results across studies. This paper a) reviews decision rules researchers have used in the past, b) compares the impact of using different decision rules on a common data set, and c) identifies issues to consider for accelerometer data reduction. Methods The methods sections of studies published in 2003 and 2004 were reviewed to determine what decision rules previous researchers have used to identify wearing period, minimal wear requirement for a valid day, spurious data, number of days used to calculate the outcome variables, and extract bouts of moderate to vigorous physical activity (MVPA). For this study, four data reduction algorithms that employ different decision rules were used to analyze the same data set. Results The review showed that among studies that reported their decision rules, much variability was observed. Overall, the analyses suggested that using different algorithms impacted several important outcome variables. The most stringent algorithm yielded significantly lower wearing time, the lowest activity counts per minute and counts per day, and fewer minutes of MVPA per day. An exploratory sensitivity analysis revealed that the most stringent inclusion criterion had an impact on sample size and wearing time, which in turn affected many outcome variables. Conclusions These findings suggest that the decision rules employed to process accelerometer data have a significant impact on important outcome variables. Until guidelines are developed, it will remain difficult to compare findings across studies
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
We prove that homogeneous bent functions f:GF(2)^2n --> GF(2) of degree n do not exist for n>3. Consequently homogeneous bent functions must have degree
Resumo:
Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.
Resumo:
Introduction Intense exercise induced acidosis occurs from the accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract any detrimental effect of acidosis and benefit performance. The aim of this study was to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance in healthy males. Methods Five males ingested either ß-alanine (BAl) (4.8 g.d-1 for 4wk, then 6.4 g.d-1 for 2wk) or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Following supplementation, participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test of 5 x 6s, with 24s rest periods, was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of their max workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with magnetic resonance spectrometry was performed in the soleus and gastrocnemius. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Results Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively with 6 wk supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate in the BAl condition was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. FIG. 1: Changes in carnosine concentration in the gastrocnemius prior and post 6 week chronic supplementation of placebo and β-alanine. Values expressed as mean.* p<0.05 from Pl at 6 weeks, # p<0.05 from pre supplementation. Conclusion/Discussion Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. However, this only translated into enhanced performance during the CCT110% high intensity cycling exercise protocol, with no change observed during the RSA test. No differences in post exercise and recovery plasma lactates and blood pH, indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple bout high intensity exercise. Changes in plasma lactate during recovery supports that ß-alanine supplementation may affect anaerobic metabolism however during single bout high intensity.
Resumo:
Intense exercise induced acidosis occurs after accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract detrimental effects of acidosis and benefit performance. This study aimed to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance. Five healthy males ingested either ß-alanine or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of maximum workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with in vivo magnetic resonance spectrometry was performed in the soleus and gastrocnemius muscle. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively after supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate after BAI was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. This translated into enhanced performance during the CCT110% high intensity cycling exercise protocol but not during the RSA test. The lack of change in plasma lactate or blood pH indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple-bout high-intensity exercise. Changes measured in plasma lactate during recovery support the hypothesis that ß-alanine supplementation may affect anaerobic metabolism particularly during single bout high intensity.