968 resultados para Open quantum systems
Resumo:
This panel presentation provided several use cases that detail the complexity of large-scale digital library system (DLS) migration from the perspective of three university libraries and a statewide academic library services consortium. Each described the methodologies developed at the beginning of their migration process, the unique challenges that arose along the way, how issues were managed, and the outcomes of their work. Florida Atlantic University, Florida International University, and the University of Central Florida are members of the state's academic library services consortium, the Florida Virtual Campus (FLVC). In 2011, the Digital Services Committee members began exploring alternatives to DigiTool, their shared FLVC hosted DLS. After completing a review of functional requirements and existing systems, the universities and FLVC began the implementation process of their chosen platforms. Migrations began in 2013 with limited sets of materials. As functionalities were enhanced to support additional categories of materials from the legacy system, migration paths were created for the remaining materials. Some of the challenges experienced with the institutional and statewide collaborative legacy collections were due to gradual changes in standards, technology, policies, and personnel. This was manifested in the quality of original digital files and metadata, as well as collection and record structures. Additionally, the complexities involved with multiple institutions collaborating and compromising throughout the migration process, as well as the move from a consortial support structure with a vendor solution to open source systems (both locally and consortially supported), presented their own sets of unique challenges. Following the presentation, the speakers discussed commonalities in their migration experience, including learning opportunities for future migrations.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular in field theory descriptions of quantum systems probed at energies much lower than one or few characterizing scales. More recently, EFTs have gained a prominent role in the study of fundamental interactions and in particular in the parametriasation of new physics beyond the Standard Model, which would occur at scales Λ, much larger than the electroweak scale. In this thesis, EFTs are employed to study three different physics cases. First, we consider light-by-light scattering as a possible probe of new physics. At low energies it can be described by dimension-8 operators, leading to the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence of matching coefficients on type of particle running in the loop, confirming the sensitiveness to the spin, mass, and interactions of possibly new particles. Second, we consider EFTs to describe Dark Matter (DM) interactions with SM particles. We consider a phenomenologically motivated case, i.e., a new fermion state that couples to the Hypercharge through a form factor and has no interactions with photons and the Z boson. Results from direct, indirect and collider searches for DM are used to constrain the parameter space of the model. Third, we consider EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to ordinary matter through dimension-5 operators. In our case study, we investigate the rather unique phenomenological implications of ALPs with enhanced couplings to the top quark.
Resumo:
The study of ultra-cold atomic gases is one of the most active field in contemporary physics. The main motivation for the interest in this field consists in the possibility to use ultracold gases to simulate in a controlled way quantum many-body systems of relevance to other fields of physics, or to create novel quantum systems with unusual physical properties. An example of the latter are Bose-Fermi mixtures with a tunable pairing interaction between bosons and fermions. In this work, we study with many-body diagrammatic methods the properties of this kind of mixture in two spatial dimensions, extending previous work for three dimensional Bose-Fermi mixtures. At zero temperature, we focus specifically on the competition between boson condensation and the pairing of bosons and fermions into molecules. By a numerical solution of the main equations resulting by our many-body diagrammatic formalism, we calculate and present results for several thermodynamic quantities of interest. Differences and similarities between the two-dimensional and three-dimensional cases are pointed out. Finally, our new results are applied to discuss a recent proposal for creating a p-wave superfluid in Bose-Fermi mixtures with the fermionic molecules which form for sufficiently strong Bose-Fermi attraction.
Resumo:
A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices. This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the population master equation by adiabatic elimination of quantum coherences in the presence of elastic scattering. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong tunneling between the wells. The method is an alternative to Green's function methods and population master equations for very small coherently coupled quantum dots.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Resumo:
We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.
Resumo:
The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.
Resumo:
In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.
Resumo:
The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V.