858 resultados para OSTEOGENIC-SARCOMA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lima S.A.F., Wodewotzky T.I., Lima-Neto J.F., Beltrao-Braga P.C.B. & Alvarenga F.C.L. 2012. [In vitro differentiation of mesenchimal stem cells of dogs into osteogenic precursors.] Diferenciacao in vitro de celulas-tronco mesenquimais da medula ossea de caes em precursores osteogenicos. Pesquisa Veterinaria Brasileira 32(5):463-469. Departamento de Reproducao Animal e Radiologia Veterinaria, Faculdade de Medicina Veterinaria e Zootecnia, Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubiao Junior s/n, Botucatu, SP 18618-970, Brazil. E-mail: silviavet@usp.br The aim of our research was to evaluate the potential for osteogenic differentiation of mesenchimal stem cells (MSC) obtained from dog bone marrow. The MSC were separated using the Ficoll method and cultured under two different conditions: DMEM low glucose or DMEM/F12, both containing L-glutamine, 20% of FBS and antibiotics. MSC markers were tested, confirming CD44+ and CD34- cells with flow cytometry. For osteogenic differentiation, cells were submitted to four different conditions: Group 1, same conditions used for primary cell culture with DMEM supplemented media; Group 2, same conditions of Group 1 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. Group 3, Cells cultured with supplemented DMEM/F12 media, and Group 4, same conditions as in Group 3 plus differentiation inductors Dexametazone, ascorbic acid and beta-glicerolphosphate. The cellular differentiation was confirmed using alizarin red and imunostaining with SP7/Osterix antibody. We observed by alizarin staining that calcium deposit was more evident in cells cultivated in DMEM/F12. Furthermore, by SP/7Osterix antibody immunostaining we obtained 1:6 positive cells when using DMEM/F12 compared with 1:12 for low-glucose DMEM. Based on our results, we conclude that the medium DMEM/F12 is more efficient for induction of differentiation of mesenchymal stem cells in canine osteogenic progenitors. This effect is probably due to the greater amount of glucose in the medium and the presence of various amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaposi's sarcoma is an angioproliferative tumour rarely found in the oral cavity. We present the 3rd case of iatrogenic gingival Kaposi's sarcoma reported in the English-language literature which developed in a young patient 5 years after a renal transplant and discuss their histological features and differential diagnosis. (c) 2011 European Association for Cranio-Maxillo-Facial Surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzed the newly formed bone tissue after application of recombinant human BMP-2 (rhBMP-2) and P-1 (extracted from Hevea brasiliensis) proteins, 2 weeks after the creation of a critical bone defect in male Wistar rats treated or not with a low-intensity laser (GaAlAs 780 nm, 60 mW of power, and energy density dose of 30 J/cm2). The animals were divided into two major groups: (1) bone defect plus low-intensity laser treatment and (2) bone defect without laser irradiation. The following subgroups were also analyzed: (a) 5 mu g of pure rhBMP-2; (b) 5 mu g of pure P-1 fraction; (c) 5 mu g of rhBMP-2/monoolein gel; (d) 5 mu g of P-1 fraction/monoolein gel; (e) pure monoolein gel. Comparisons of the groups receiving laser treatment with those that did not receive laser irradiation show differences in the areas of new bone tissue. The group treated with 5 mu g of rhBMP-2 and laser irradiation was not significantly different (P >0.05) than the nonirradiated group that received the same treatment. The irradiated, rhBMP-2/monoolein gel treatment group showed a lower area of bone formation than the nonirradiated, rhBMP-2/gel monoolein treatment group (P < 0.001). The area of new bone tissue in the other nonirradiated and irradiated groups was not significantly different (P > 0.05). Furthermore, the group that received the 5 mu g of rhBMP-2 application showed the greatest bone formation. We conclude that the laser treatment did not interfere with the area of new bone tissue growth and that the greatest stimulus for bone formation involved application of the rhBMP-2 protein. Microsc. Res. Tech. 2011. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Bone fractures and loss represent significant costs for the public health system and often affect the patients quality of life, therefore, understanding the molecular basis for bone regeneration is essential. Cytokines, such as IL-6, IL-10 and TNFα, secreted by inflammatory cells at the lesion site, at the very beginning of the repair process, act as chemotactic factors for mesenchymal stem cells, which proliferate and differentiate into osteoblasts through the autocrine and paracrine action of bone morphogenetic proteins (BMPs), mainly BMP-2. Although it is known that BMP-2 binds to ActRI/BMPR and activates the SMAD 1/5/8 downstream effectors, little is known about the intracellular mechanisms participating in osteoblastic differentiation. We assessed differences in the phosphorylation status of different cellular proteins upon BMP-2 osteogenic induction of isolated murine skin mesenchymal stem cells using Triplex Stable Isotope Dimethyl Labeling coupled with LC/MS. Results From 150 μg of starting material, 2,264 proteins were identified and quantified at five different time points, 235 of which are differentially phosphorylated. Kinase motif analysis showed that several substrates display phosphorylation sites for Casein Kinase, p38, CDK and JNK. Gene ontology analysis showed an increase in biological processes related with signaling and differentiation at early time points after BMP2 induction. Moreover, proteins involved in cytoskeleton rearrangement, Wnt and Ras pathways were found to be differentially phosphorylated during all timepoints studied. Conclusions Taken together, these data, allow new insights on the intracellular substrates which are phosphorylated early on during differentiation to BMP2-driven osteoblastic differentiation of skin-derived mesenchymal stem cells.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Human Herpesvirus 8 (HHV-8) is the etiological agent of Kaposi’s Sarcoma (KS) and it is also associated with two B cell lymphoproliferative diseases: primary effusion lymphoma (PEL), and the plasmablastic form of multicentric Castelman’s disease (MCD). HHV-8 establishes persistent infection in the host with tropism for multiple cell types. In KS patients, the virus is found in tumor-spindle cells, peripheral blood monocytes, endothelial progenitor circulating cells, T and B lymphocytes. Peripheral B cells represent one of the major virus reservoir, but the consequences of HHV-8 infection of these cells have been poorly characterized. Therefore, in this study the frequency, the immunophenotypic profile and the functional activity of different peripheral B cell subsets in patients with classic KS (cKS) was analysed in order to identify potential alterations of these cells. The classic variant of KS is ideal to perform such studies, as it lacks confounding factors such as HIV or EBV infection and immunosuppression. Methods: Whole-blood samples from patients with the classical form of KS (cKS) (n=62) and healthy age and sex-matched seronegative controls (HSN) (n=43) were analyzed by multiparametric flow-cytometry to determine the frequency of B cells and their subpopulations, as well as their surface expression of immunoglobulins and activation markers. Results: The frequency of circulating B cells was significantly higher in cKS patients than in controls. In particular, the analysis of the B cell subsets revealed a higher frequency of naïve B cells (CD19+CD27-), among which transitional CD19+CD38highCD5+ and pre-naïve (CD27-CD38intCD5+ ) B cells demonstrated an expansion. Memory B cells (CD19+CD27+) did not differ between the two study groups, except from a higher frequency of CD19+CD27+IgM+IgD+ B cells, the typical phenotype of marginal zone (MZ) B cells, in cKS patients. The characterization of membrane surface activation markers showed lower levels of the activation marker HLA-DR only on CD27- B cells, while CD80 and CD86 were less represented in all the the B cells from cKS patients. Moreover, B cells from cKS patients were smaller and with less granules than the ones from controls. Conclusion: Taken together, these results clearly indicate that circulating B cells are altered in patients with cKS, showing an expansion of the immature phenotypes. These B cell alterations may be due to an indirect viral effect rather than to a direct one: the cytokines expressed in the microenvironment typical of cKS may cause a faster release of immature cells from the bone marrow and a lower grade of peripheral differentiation, as already suggested for other chronic viral infections such as HIV and HCV. Further studies will be necessary to understand how these alterations contribute to the pathogenesis of KS and, eventually, to the different clinical evolution of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il sarcoma di Ewing (ES) è un tumore maligno pediatrico dell’apparato scheletrico; è associato a una traslocazione specifica codificante la proteina di fusione EWS-FLI1 e all’alta espressione di CD99, una glicoproteina di membrana fisiologicamente coinvolta in diversi processi biologici. EWS-FLI1 e CD99, sono riportati avere ruoli divergenti nella modulazione della malignità e del differenziamento di ES. CD99 inoltre è riportato modulare il pathway di MAPK, il quale interagendo con molteplici fattori di trascrizione partecipa a processi di proliferazione e differenziamento. In questo studio abbiamo investigato in due linee cellulari di ES silenziate per CD99 (TC-71shCD99 e IOR/CARshCD99) l’attività basale di diversi fattori trascrizionali quali: NF-kBp65, AP1, Elk-1, E2F e CREB. L’unico fattore trascrizionale statisticamente significativo è risultato essere NF-kBp65 e abbiamo valutato il suo ruolo nel differenziamento neurale di cellule di ES e la relazione con EWS-FLI1 e CD99. L’attività trascrizionale di NF-kB è stata valutata attraverso gene reporter assay in linee cellulari di ES a diversa espressione di CD99, EWS-FLI1 e NF-kB stesso. Il differenziamento neurale è stato valutato come espressione di βIII-Tubulin in immunofluorescenza. Il silenziamento di CD99 induce una down-modulazione dell’attività trascrizionale di NF-kB, mentre il knockdown di EWS-FLI1 ne induce un’aumento. Inoltre, il silenziamento di EWS-FLI1 non è in grado di contrastare la riduzione dell’attività di NF-kB osservata dopo silenziamento di CD99, suggerendo un ruolo dominante del CD99 nel signaling di NF-kB. Cellule deprivate di CD99 ma non di EWS-FLI1, mostrano un fenotipo differenziato in senso neurale, fenotipo che viene perso quando le cellule sono indotte a sovraesprimere NF-kB. Inoltre, in cellule CD99 positive, il silenziamento di NF-kB induce un leggero differenziamento neurale. In conclusione, questi dati hanno evidenziato il ruolo di NF-kB nel differenziamento di cellule di ES e che potrebbe essere un potenziale target nel ridurre la progressione di questo tumore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sox2 transcription factor is modified by sumoylation at the K247 position although the addition of SUMO1 and Pias1 promotes the sumoylation of Sox2 at the additional K123 site. The role of sumoylation on Sox2 biological functions was analyzed by comparing the activity of WT and sumoylation mutants on the transcription of the FGF4 gene in HeLa cells and on the downregulation of the Wnt pathwayvin 293T cells. When SUMO1 and PIAS1 promote the sumoylation of WT Sox2, the transcriptional activity of the FGF4 promoter is inhibited showing that Sox2 sumoylation is necessary for the repression function. However, there is no effect of Sox2 sumoylation on β-Catenin activity. Since we were interested in osteoblast differentiation we set up an inducible system for Sox2 in primary osteoblasts. Following Sox2 doxycycline induction, 158 genes were differentially expressed: 120 up-regulated and 38 down-regulated. We annotated as direct Sox2 targets a number of genes involved in osteoblast biology and we further analyzed 3 of them involved in the BMP pathway. The results show that Sox2 regulates the BMP pathway without affecting SMAD phosphorylation, and that Sox2 sumoylation is not necessary for this function. We also found that genes involved in the Hippo pathway were direct Sox2 targets. As the Hippo pathway is activated by Sox2 and Sox2 interacts with the NF2 promoter, we checked the effect of Sox2 on the expression of NF2. We showed that Sox2 down-regulates the transcriptional activity of the NF2 promoter, allowing the transcription of the YAP/TEAD genes in osteoblasts, thus acting as an upstream regulator of the Hippo pathway. We conclude that Sox2 induction in osteoblasts triggers FGF dependent inhibition of the BMP, Wnt and Hippo pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD99 is a 32 kDa transmembrane protein whose high expression characterizes Ewing sarcoma (ES), a very aggressive pediatric bone tumor. In addition to its diagnostic value, CD99 has therapeutic potential since it leads to rapid and massive ES cell death when engaged with specific antibodies. Here a novel mechanism of cell death triggered via CD99 is shown, leading, ultimately, to the appearance of macropinocytotic vescicles. Anti-CD99 mAb 0662 induces MDM2 ubiquitination and degradation, which causes not only a p53 reactivation but also the IGF-1R induction and its subsequent internalization; CD99 results internalized together with IGF-1R inside endosomes, but then the two molecules display a different sorting: CD99 is degraded, while IGF-1R is recycled on the surface, causing, as a final step, the up-regulation of RAS-MAPK. High-expressing CD99 mesenchymal stem cells show mild Ras induction but no p53 activation and escape cell death, but in presence of EWS/FLI1 mesenchymal stem cells expressing CD99 show a stronger Ras induction and a p53 reactivation, leading to a significant cell death rate. We propose that CD99 triggering in a EWS/FLI1-driven oncogenetic context creates a synergy between RAS upregulation and p53 activation in ES cells, leading to cell death. Moreover, our data rule out possible concerns on toxicity related to the broad CD99 expression in normal tissues and provide the rationale for the therapeutic use of anti-CD99 MAbs in the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant expression of ETS transcription factors, including FLI1 and ERG, due to chromosomal translocations has been described as a driver event in initiation and progression of different tumors. In this study, the impact of prostate cancer (PCa) fusion gene TMPRSS2-ERG was evaluated on components of the insulin-like growth factor (IGF) system and the CD99 molecule, two well documented targets of EWS-FLI1, the hallmark of Ewing sarcoma (ES). The aim of this study was to identify common or distinctive ETS-related mechanisms which could be exploited at biological and clinical level. The results demonstrate that IGF-1R represents a common target of ETS rearrangements as ERG and FLI1 bind IGF-1R gene promoter and their modulation causes alteration in IGF-1R protein levels. At clinical level, this mechanism provides basis for a more rationale use of anti-IGF-1R inhibitors as PCa cells expressing the fusion gene better respond to anti-IGF-1R agents. EWS-FLI1/IGF-1R axis provides rationale for combination of anti-IGF-1R agents with trabectedin, an alkylator agent causing enhanced EWS-FLI1 occupancy on the IGF-1R promoter. TMPRSS2-ERG also influences prognosis relevance of IGF system as high IGF-1R correlates with a better biochemical progression free survival (BPFS) in PCa patients negative for the fusion gene while marginal or no association was found in the total cases or TMPRSS2-ERG-positive cases, respectively. This study indicates CD99 is differentially regulated between ETS-related tumors as CD99 is not a target of ERG. In PCa, CD99 did not show differential expression between TMPRSS2-ERG-positive and –negative cells. A direct correlation was anyway found between ERG and CD99 proteins both in vitro and in patients putatively suggesting that ERG target genes comprehend regulators of CD99. Despite a little trend suggesting a correlation between CD99 expression and a better BPFS, no clinical relevance for CD99 was found in the field of prognostic biomarkers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to determine the feasibility of generating a biodegradable, stem cell-loaded osteogenic composite graft from human placenta. Initially, a scaffold from human chorion membrane was produced. Human placenta mesenchymal stem cells (MSCs) derived from either first-trimester chorionic villi or term chorion membrane were differentiated osteogenically on this scaffold. Outgrowth, adherence, and osteogenic differentiation of cells were assessed by immunohistochemistry (IHC), scanning electron microscopy, protein expression, and real-time polymerase chain reaction (RT-PCR). Our results showed that a cell-free extracellular matrix scaffold can be generated from human chorion. Seeded MSCs densely adhered to that scaffold and were osteogenically differentiated. Calcium and alkaline phosphatase were detected in the cell-scaffold constructs as a proof of mineralization and findings were confirmed by IHC and RT-PCR results. This study shows for the first time that generation of an osteogenic composite graft using placental tissue is feasible. It might allow therapeutic application of autologous or allogeneic grafts in congenital skeletal defects by means of a composite graft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osteogenic potential of autogenous bone grafts is superior to that of allografts and xenografts because of their ability to release osteoinductive growth factors and provide a natural osteoconductive surface for cell attachment and growth. In this in vitro study, autogenous bone particles were harvested by four commonly used techniques and compared for their ability to promote an osteogenic response. Primary osteoblasts were isolated and seeded on autogenous bone grafts prepared from the mandibles of miniature pigs with a bone mill, piezo-surgery, bone scraper, and bone drill (bone slurry). The osteoblast cultures were compared for their ability to promote cell attachment, proliferation, and differentiation. After 4 and 8 hrs, significantly higher cell numbers were associated with bone mill and bone scraper samples compared with those acquired by bone slurry and piezo-surgery. Similar patterns were consistently observed up to 5 days. Furthermore, osteoblasts seeded on bone mill and scraper samples expressed significantly elevated mRNA levels of collagen, osteocalcin, and osterix at 3 and 14 days and produced more mineralized tissue as assessed by alizarin red staining. These results suggest that the larger bone graft particles produced by bone mill and bone scraper techniques have a higher osteogenic potential than bone slurry and piezo-surgery.