202 resultados para OSTEOCLASTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified a second isoform of the catalytic A subunit of the vacuolar H+ pump in chicken osteoclasts. In this isoform (A2) a 72-bp cassette replaces a 90-bp cassette present in the classical A1 isoform. The A1-specific cassette encodes a region of the protein that contains one of the three ATP-binding consensus sequences (the P-loop) identified in this polypeptide, as well as the pharmacologically relevant Cys254. In contrast, the A2-specific cassette does not contain any of these features. These two isoforms, which appear to be ubiquitously expressed, are encoded by a single gene and are generated by alternative splicing of two mutually exclusive exons. The alternative RNA processing involves the recognition of a single site, the boundary between the A2- and A1-specific exons, as either acceptor (in A1) or donor (in A2) splice site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O nicho endosteal da medula óssea abriga as células-tronco hemopoéticas (CTH) em quiescência/autorrenovação. As CTH podem ser classificadas em dois grupos: células que reconstituem a hemopoese em longo prazo (LT-CTH) e curto prazo (CT-CTH). Investigamos, neste trabalho, os efeitos da desnutrição proteica (DP) no tecido ósseo e a participação do nicho endosteal na sinalização osteoblasto-CTH. Para tanto, utilizamos camundongos submetidos à DP induzida pelo consumo de ração hipoproteica. Os animais desnutridos apresentaram pancitopenia e diminuição nas concentrações de proteínas séricas e albumina. Quantificamos as CTH por citometria de fluxo e verificamos que os desnutridos apresentaram menor porcentagem de LT-CTH, CT-CTH e de progenitores multipotentes (PMP). Avaliamos a expressão das proteínas CD44, CXCR4, Tie-2 e Notch-1 nas LT-CTH. Observamos diminuição da expressão da proteína CD44 nos desnutridos. Isolamos as células LT-CTH por cell sorting e avaliamos a expressão gênica de CD44, CXCR4 e NOTCH-1. Verificamos que os desnutridos apresentaram menor expressão de CD44. Em relação ao ciclo celular, verificamos maior quantidade de LT-CTH nas fases G0/G1. Caracterizamos as alterações do tecido ósseo femoral, in vivo. Observamos diminuição da densidade mineral óssea e da densidade medular nos desnutridos. A desnutrição acarretou diminuição da área média das seções transversais, do perímetro do periósteo e do endósteo na cortical do fêmur dos animais. E na região trabecular, verificou-se diminuição da razão entre volume ósseo e volume da amostra e do número de trabéculas, aumento da distância entre as trabéculas e prevalência de trabéculas ósseas em formato cilíndrico. Avaliamos a expressão de colágeno, osteonectina (ON) e osteocalcina (OC) por imuno-histoquímica, e de osteopontina (OPN) por imunofluorescência no fêmur e verificamos diminuição da marcação para OPN, colágeno tipo I, OC e ON nos desnutridos. Evidenciamos, pela técnica do Picrosírius, desorganização na distribuição das fibras colágenas e presença de fibras tipo III nos fêmures dos desnutridos, além de maior número de osteoclastos evidenciados pela reação da fosfatase ácida tartarato resistente. Os osteoblastos da região femoral foram isolados por depleção imunomagnética, imunofenotipados por citometria de fluxo e cultivados em meio de indução osteogênica. Observamos menor positividade para fosfatase alcalina e vermelho de alizarina nas culturas dos osteoblastos dos desnutridos. Avaliamos, por Western Blotting, a expressão de colágeno tipo I, OPN, osterix, Runx2, RANKL e osteoprotegerina (OPG), e, por PCR em tempo real, a expressão de COL1A2, SP7, CXCL12, ANGPT1, SPP1, JAG2 e CDH2 nos osteoblastos isolados. Verificamos que a desnutrição acarretou diminuição da expressão proteica de osterix e OPG e menor expressão gênica de ANGPT1. Avaliamos a proliferação das células LSK (Lin-Sca1+c-Kit+) utilizando ensaio de CFSE (carboxifluoresceína succinimidil ester). Foi realizada cocultura de células LSK e osteoblastos (MC3T3-E1) na presença e ausência de anti-CD44. Após uma semana, verificamos menor proliferação das LSK dos desnutridos. O bloqueio de CD44 das LSK do grupo controle diminuiu a proliferação destas em três gerações. Entretanto, nos desnutridos, esse bloqueio não afetou a proliferação. Concluímos que a DP promoveu alterações no tecido ósseo e nas CTH. Entretanto, não podemos afirmar que as alterações observadas no sistema hemopoético foram decorrentes de alterações exclusivas do nicho endosteal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of the TRACP promoter has been investigated as a model of gene regulation in osteoclasts. The murine TRACP gene promoter contains potential binding sites for a number of transcription factors in particular, candidate sites for the Ets factor PU.1 and for the microphthalmia transcription factor (MiTF). These are of relevance to osteoclast biology because the PU.1 knockout mouse has an osteopetrotic phenotype, and MiTF, when mutated in the mi/mi mouse, also results in osteopetrosis. The binding sites for both of these factors have been identified, and they have been determined to be functional in regulating TRACP expression. A novel assay system using the highly osteoclastogenic RAW/C4 subclone of the murine macrophage cell line RAW264.7 was used to perform gene expression experiments on macrophage and osteoclast cell backgrounds. We have shown that TRACP expression is a target for regulation by the macrophage/osteoclast transcription factor PU.1 and the osteoclast commitment factor MiTF and that these factors act synergistically in regulating this promoter. This directly links two controlling factors of osteoclast differentiation to the expression of an effector of cell function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Apoptosis and differentiation are among the consequences of changes in intracellular Ca2+ levels. In this study, we investigated the effects of the endoplasmic reticular Ca2+-ATPase inhibitor, thapsigargin (TG), on osteoclast apoptosis and differentiation. Materials and Methods: Both RAW264.7 cells and primary spleen cells were used to examine the effect of TG on RANKL-induced osteoclastogenesis. To determine the action of TG on signaling pathways, we used reporter gene assays for NF-kappa B and activator protein-1 (AP-1) activity, Western blotting for phosphoextracellular signal-related kinase (ERK), and fluorescent probes to measure changes in levels of intracellular calcium and reactive oxygen species (ROS). To assess rates of apoptosis, we measured changes in annexin staining, caspase-3 activity, and chromatin and F-actin microfilament structure. Results: At concentrations that caused a rapid rise in intracellular Ca2+, TG increased caspase-3 activity and promoted apoptosis in osteoclast-like cells (OLCs). Low concentrations of TG, which were insufficient to measurably alter intracellular Ca2+, unexpectedly suppressed caspase-3 activity and enhanced RANKL-induced osteoclastogenesis. At these lower concentrations, TG potentiated ROS production and RANKL-induced NF-kappa B activity, but suppressed RANKL-induced AP-1 activity and had little effect on ERK phosphorylation. Conclusion: Our novel findings of a biphasic effect of TG are incompletely explained by our current understanding of TG action, but raise the possibility that low intensity or local changes in subcellular Ca2+ levels may regulate intracellular differentiation signaling. The extent of cross-talk between Ca2+ and RANKL-mediated intracellular signaling pathways might be important in determining whether cells undergo apoptosis or differentiate into OLCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NF-kappaB activation is associatied with the inflammation of bone destruction and certain cancers. The NEMO (NF-kB essential modulator)-binding domain (NBD) protein inhibits the activation of NF-kappaB. Cellular studies have shown that the NBD protein inhibits osteoclastogenesis. Mimicking infection with a lipopolysaccharide injection in mice resulted in activated osteoclasts and reduced bone mineral density. These responses are inhibited with the NBD peptide. In a mouse model of rheumatoid arthritis, collagen-induced arthritis, treatment with the NBD protein delayed the onset, lowered the incidence and decreased the severity of the arthritis. NF-kappaB is a target in the inflammation associated with bone destruction. A key issue is whether or not this important transcription factor can be inhibited without causing excessive adverse effects and/or toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of osteoclast differentiation in the bone microenvironment is critical for normal bone remodeling, as well as for various human bone diseases. Over the last decade, our knowledge of how osteoclast differentiation occurs has progressed rapidly. We highlight some of the major advances in understanding how cell signaling and transcription are integrated to direct the differentiation of this cell type. These studies used genetic, molecular, and biochemical approaches. Additionally, we summarize data obtained from studies of osteoclast differentiation that used the functional genomic approach of global gene profiling applied to osteoclast differentiation. This genomic data confirms results from studies using the classical experimental approaches and also may suggest new modes by which osteoclast differentiation and function can be modulated. Two conclusions that emerge are that osteoclast differentiation depends on a combination of fairly ubiquitously expressed transcription factors rather than unique osteoclast factors, and that the overlay of cell signaling pathways on this set of transcription factors provides a powerful mechanism to fine tune the differentiation program in response to the local bone microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. Receptor activator of NF-kappa B ligand (RANKL) and osteoprotegerin (OPG) have been demonstrated to be critical regulators of osteoclast generation and activity. In addition, RANKL has been implicated as an important mediator of bone erosion in rheumatoid arthritis (RA). However, the expression of RANKL and OPG at sites of pannus invasion into bone has not been examined. The present study was undertaken to further elucidate the contribution of this cytokine system to osteoclastogenesis and subsequent bone erosion in RA by examining the pattern of protein expression for RANKL, OPG and the receptor activator of NF-kappa B (RANK) in RA at sites of articular bone erosion. Methods. Tissues from 20 surgical procedures from 17 patients with RA were collected as discarded materials. Six samples contained only synovium or tenosynovium remote from bone, four samples contained pannus-bone interface with adjacent synovium and 10 samples contained both synovium remote from bone and pannu-bone interface with adjacent synovium. Immunohistochemistry was used to characterize the cellular pattern of RANKL, RANK and OPG protein expression immediately adjacent to and remote from sites of bone erosion. Results. Cellular expression of RANKL protein was relatively restricted in the bone microenvironment; staining was focal and confined largely to sites of osteoclast-mediated erosion at the pannus-bone interface and at sites of subchondral bone erosion. RANK-expressing osteoclast precursor cells were also present in these sites. OPG protein expression was observed in numerous cells in synovium remote from bone but was more limited at sites of bone erosion, especially in regions associated with RANKL expression. Conclusions. The pattern of RANKL and OPG expression and the presence of RANK-expressing osteoclast precursor cells at sites of bone erosion in RA contributes to the generation of a local microenvironment that favours osteoclast differentiation and activity. These data provide further evidence implicating RANKL in the pathogenesis of arthritis-induced joint destruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronic state of hyperglycemia due to diabetes mellitus affects multiples organs impairing life quality. In bone, diabetes alters strength and mineral density and also suppresses the osteoblast activity, leading to an unbalanced bone healing process. Hyperbaric oxygen therapy (HBO) is suggested as an adjuvant treatment to accelerate bone repair. This study evaluated the effects of HBO in the number of mast cells and in new bone formation at the initial stage of bone repair in normoglycemic and diabetic rats. It was hypothesized that HBO treatment may improve bone repair in diabetic bone. The rats were equally divided in four groups: Control (C); Control + HBO (CH); Diabetes (D) and Diabetes + HBO (DH). Diabetes was induced by streptozotocin (65mg/kg) and femoral bone defects were created thirty days after diabetes induction in all groups. HBO initiated immediately after surgery procedure and was performed daily, for 7 days, in the CH e DH groups. Seven days after surgery, all animals were euthanized. The femur diaphyses were removed, fixated, decalcified and processed for paraffin embedding. The semi-serial histological sections obtained were stained with Hematoxylin-Eosin (HE), Mallory Trichrome and Toluidine Blue. The qualitative analysis was conducted in the histology slides stained with HE, where it was evaluated the morphological aspects of bone repair in the lesion area, observing the presence of clot, inflammatory cells, granulation tissue, type of bone tissue, morphology of bone cells, and thickness and organization of bone trabeculae. In the slides stained with Mallory Trichrome and Toluidine Blue were evaluated the percentage of new bone formation and number of mast cells, respectively. The qualitative analysis showed that the CH group presented a more advanced stage of bone repair compared to the C group, showing thicker trabeculae and greater bone filling of the lesion area. In D and DH group, the lesion area was partially filled with new bone formation tissue and presented thinner trabeculae and fewer areas associated to osteoclasts compared to control group. The histomorphometric analysis showed a significant improvement in new bone formation (p<0.001) comparing CH (38.08 ± 4.05) and C (32.05 ± 5.51); C and D (24.62 ± 2.28 and CH and DH (27.14 ± 4.21) groups. In the normoglycemic rats there was a significant increasing in the number of mast cells (p<0.05) comparing C (8.06 ± 5.15) and CH (21.06 ± 4.91) groups. In conclusion, this study showed that diabetes impaired bone repair and HBO was only able to increase new bone formation and the number of mast cells in the normoglycemic animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho divide-se em duas partes distintas: uma longa e detalhada revisão bibliográfica acerca das temáticas anatomia peri-implantar, espaço biológico, osso alveolar, osteointegração, cone Morse e platform-switching e FEA (Finit Element Analisys) ; e um estudo sobre tensões peri-implantares em implantes do tipo cone Morse colocados infra e justa crestalmente. Foi possível concluir com este estudo laboratorial que os implantes colocados justacrestalmente apresentam melhores resultados biomecanicamente, ou seja, apresentam um menor volume de osso em tensão. Materiais e métodos: Foi realizada uma pesquisa bibliográfica na PubMed e Medline explorando os seguintes items: “osteointegração”, “saucerização”, “platform switching”, “cone Morse”, “osso alveolar”, “anatomina peri-implantar”, “espaço biológico”, “osteoclastos”, “osteoblastos”, “remodelação óssea”, “colocação de implantes justacrestalmente”, “colocação de implantes infra-crestalmente” e “análise de FEA”. Na bibliografia encontrada com as temáticas supra-citadas foi feita uma cuidadosa selecção de acordo com aquilo a que este trabalho se propunha. Simultaneamente, um modelo 3D de dois implantes, um de conexão externa hexagonal e outro de conexão interna do tipo cone Morse, exactamente iguais com exceção da já referida conexão, de 10mm de comprimento e 4mm de diâmetro, foram inseridos num bloco ósseo obtido através de uma CT e sujeitos a uma força axial de 150N e uma força oblíqua de 150N a 45º, tendo sido avaliados por uma análise de elementos finitos.