944 resultados para Noncommutative geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study case in which a geosynthetic-reinforced soil (GRS) structure was used to rebuild a 12 m high slope after its failure. The failed slope is located between the parking lot of a private company and a public school. Due to surrounding structures restrictions, this project required a solution with rapidity in execution. In addition, as a requirement established by its owner, this structure should recover the original geometry of the slope. Besides the importance regarding surrounding constructions, an interesting aspect of this study case relies on the versatility of geosynthetic materials. A woven geotextile was used as reinforcement. Five other geosynthetic materials were used in this study case. Facing comprised a geocell filled with local soil cover and grass mats, resulting in a green facing. A geonet was used to hold the grass mats in place before grass roots development. Regarding the drainage system, geocomposite drains and geopipes were installed to drain subsurface water. A nonwoven geotextile was used as filter in drainage trenches, which were placed near the structure toe. Additionally to the GRS structure, the lower portion of the slope was reinforced with soil nailing technique. The face of the nailed soil portion was covered with sandbags and shotcrete. It emphasizes the flexibility of GRS structures regarding their application with other technical options in Geotechnical Engineering. The economic aspect of this study case also deserves attention. It did not require soil transportation and other design and construction steps, e.g. concrete structures design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show that the electronic properties of multi-open dots structures are strongly modified by even smalt changes in their geometries. Our discussion of these effects is done in terms of the interaction among localized states (dot-like) and extended states (channel-like), from which a Fano resonance situation arises.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper bounds on fundamental length are discussed that follow from the fact that a magnetic moment is inherent in a charged particle in noncommutative (NC) electrodynamics. The strongest result thus obtained for the fundamental length is still larger than the estimate of electron or muon size achieved following the Brodsky-Drell and Dehlmet approach to lepton compositeness. This means that NC electrodynamics cannot alone explain the whole existing discrepancy between the theoretical and experimental values of the muon magnetic moment. On the contrary, as measurements and calculations are further improved, the fundamental length estimate based on electron data may go down to match its compositeness radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An explicit, area-preserving and integrable magnetic field line map for a single-null divertor tokamak is obtained using a trajectory integration method to represent equilibrium magnetic surfaces. The magnetic surfaces obtained from the map are capable of fitting different geometries with freely specified position of the X-point, by varying free model parameters. The safety factor profile of the map is independent of the geometric parameters and can also be chosen arbitrarily. The divertor integrable map is composed of a nonintegrable map that simulates the effect of external symmetry-breaking resonances, so as to generate a chaotic region near the separatrix passing through the X-point. The composed field line map is used to analyze escape patterns (the connection length distribution and magnetic footprints on the divertor plate) for two equilibrium configurations with different magnetic shear profiles at the plasma edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Plucker map between grassmannians, we study basic aspects of classic grassmannian geometries. For 'hyperbolic' grassmannian geometries, we prove some facts (for instance, that the Plucker map is a minimal isometric embedding) that were previously known in the 'elliptic' case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We undertook geometric morphometric analysis of wing venation to assess this character's ability to distinguish Anopheles darlingi Root populations and to test the hypothesis that populations from coastal areas of the Brazilian Atlantic Forest differ from those of the interior Atlantic Forest, Cerrado, and the regions South and North of the Amazon River. Results suggest that populations from the coastal and interior Atlantic Forest are more similar to each other than to any of the other regional populations. Notably, the Cerrado population was more similar to that from north of the Amazon River than to that collected of south of the River. thus showing no correlation with geographical distances. We hypothesize that environmental and ecological factors may affect wing evolution in An. darlingi. Although it is premature to associate environmental and ecological determinants with wing features and evolution of the species, investigations on this field are promising. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of Sao Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F-ST = 0.062; p < 0.05) and low levels of gene flow (Nm = 0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the superfield approach, we discuss the two-dimensional noncommutative super-QED. Its all-order finiteness is explicitly shown. Copyright (C) EPLA, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of test method factors (notch shape, square or angular, and pre-cracking method, by tapping onto or pressing a razor blade) on the results obtained in plane strain fracture toughness test according to standard ASTM D5045 using SENB specimens made of a commercial PMMA resin were investigated. Results were analyzed quantitatively by comparing the obtained K-IC values and qualitatively by observing their effect on the Moire fringes observed using photoelasticity, showing that, at 95% significance level, the K-IC values are affected by the pre-cracking method, with the most conservative value being obtained when natural pre-cracks were introduced by tapping onto a razor blade (K-IC = 1.15 +/- 0.11 MPa.m(0.5)). This correlates with a perturbation in the stress field close to the pre-crack tip observed in the photoelasticity test sample when it was introduced by pressing the razor blade. Surprisingly, notch geometry only slightly affects the results. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate how the initial geometry of a heavy-ion collision is transformed into final flow observables by solving event-by-event ideal hydrodynamics with realistic fluctuating initial conditions. We study quantitatively to what extent anisotropic flow (nu(n)) is determined by the initial eccentricity epsilon(n) for a set of realistic simulations, and we discuss which definition of epsilon(n) gives the best estimator of nu(n). We find that the common practice of using an r(2) weight in the definition of epsilon(n) in general results in a poorer predictor of nu(n) than when using r(n) weight, for n > 2. We similarly study the importance of additional properties of the initial state. For example, we show that in order to correctly predict nu(4) and nu(5) for noncentral collisions, one must take into account nonlinear terms proportional to epsilon(2)(2) and epsilon(2)epsilon(3), respectively. We find that it makes no difference whether one calculates the eccentricities over a range of rapidity or in a single slice at z = 0, nor is it important whether one uses an energy or entropy density weight. This knowledge will be important for making a more direct link between experimental observables and hydrodynamic initial conditions, the latter being poorly constrained at present.