933 resultados para Non-line-of-sight
Resumo:
Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.
Resumo:
We present observations of a poleward propagating substorm-disturbed region which was observed by the European Incoherent SCATter (EISCAT) radar and the Svalbard International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers in the postmidnight sector. The expansion of the disturbance was launched by a substorm intensification which started similar to 25 min after the initial onset, and similar to 10 min before the disturbance arrived over Svalbard. In association with the magnetic disturbance, a poleward expanding enduring enhancement in the F region electron temperature was observed, indicative of soft electron precipitation, with a narrow band of enhanced ion temperature straddling its poleward edge, indicative of fast ion flows and ion-neutral collisional heating. This electron temperature boundary was coincident with the poleward propagating electrojet current system detected by the high-latitude IMAGE magnetometer stations and is taken to be a proxy for the observation of a substorm auroral bulge. The electron temperature boundary is inferred to have a width comparable or less than one radar range gate (similar to 60 km transverse to the magnetic field), while the region of high ion temperature was found to be approximately three gates wide, extending approximately two gates (similar to 120 km) poleward of the electron temperature boundary, and approximately one gate (similar to 60 km) equatorward. The two-beam radar line-of-sight velocity data are found to be consistent with the existence of a layer of high-speed flow in the boundary, peaking at values similar to1.5-3 km s(-1), roughly consistent with the ion temperature data. The flow is directed either east or west along the boundary depending on the direction of the flow in the poleward region. We infer that the flow is deflected along and around the boundary of the substorm-disturbed region due to the high conductivity of the latter. Variations in the flow poleward of the boundary produced no discernible magnetic effects on the ground, confirming the low conductivity of the preboundary ionosphere.
Resumo:
Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.
Resumo:
Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.
Resumo:
Background We previously reported an association between 5HTTLPR genotype and outcome following cognitive–behavioural therapy (CBT) in child anxiety (Cohort 1). Children homozygous for the low-expression short-allele showed more positive outcomes. Other similar studies have produced mixed results, with most reporting no association between genotype and CBT outcome. Aims To replicate the association between 5HTTLPR and CBT outcome in child anxiety from the Genes for Treatment study (GxT Cohort 2, n = 829). Method Logistic and linear mixed effects models were used to examine the relationship between 5HTTLPR and CBT outcomes. Mega-analyses using both cohorts were performed. Results There was no significant effect of 5HTTLPR on CBT outcomes in Cohort 2. Mega-analyses identified a significant association between 5HTTLPR and remission from all anxiety disorders at follow-up (odds ratio 0.45, P = 0.014), but not primary anxiety disorder outcomes. Conclusions The association between 5HTTLPR genotype and CBT outcome did not replicate. Short-allele homozygotes showed more positive treatment outcomes, but with small, non-significant effects. Future studies would benefit from utilising whole genome approaches and large, homogenous samples.
Resumo:
This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.
Resumo:
Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic, frictionless governing equations for fluid dynamics, with tendencies arising from the parametrization of other physical processes. Since potential vorticity (PV) is conserved following fluid flow in adiabatic, frictionless circumstances, it is possible to isolate the effects of non-conservative processes by accumulating PV changes in an air-mass relative framework. This “PV tracer technique” is used to accumulate separately the effects on PV of each of the different non-conservative processes represented in a numerical model of the atmosphere. Dynamical cores are not exactly conservative because they introduce, explicitly or implicitly, some level of dissipation and adjustment of prognostic model variables which acts to modify PV. Here, the PV tracers technique is extended to diagnose the cumulative effect of the non-conservation of PV by a dynamical core and its characteristics relative to the PV modification by parametrized physical processes. Quantification using the Met Office Unified Model reveals that the magnitude of the non-conservation of PV by the dynamical core is comparable to those from physical processes. Moreover, the residual of the PV budget, when tracing the effects of the dynamical core and physical processes, is at least an order of magnitude smaller than the PV tracers associated with the most active physical processes. The implication of this work is that the non-conservation of PV by a dynamical core can be assessed in case studies with a full suite of physics parametrizations and directly compared with the PV modification by parametrized physical processes. The nonconservation of PV by the dynamical core is shown to move the position of the extratropical tropopause while the parametrized physical processes have a lesser effect at the tropopause level.
Resumo:
This work presents the first integral field spectroscopy of the Homunculus nebula around eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0 x 10(16) cm, respectively. We also mapped the blue-shifted component of He I lambda 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H II region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in eta Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament` but they are obviously spatially separated, while the blue-shifted component of He I lambda 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
Resumo:
During the past decade, several observational and theoretical works have provided evidence of the binary nature of eta Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, eta Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of eta Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind-wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of eta Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of i similar to 60 degrees +/- 10 degrees, and i* similar to 35 degrees +/- 10 degrees with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as similar to -40 degrees, showing that periastron passage occurs shortly after conjunction.
Resumo:
Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-I, in commercial defined medium. In contrast to the other hES cell lines established in defined medium, BR-I maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge, this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-I and another 22 hES cell lines established elsewhere with those of the Brazilian population, finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.
Resumo:
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not
Resumo:
The most widely used updating rule for non-additive probalities is the Dempster-Schafer rule. Schmeidles and Gilboa have developed a model of decision making under uncertainty based on non-additive probabilities, and in their paper “Updating Ambiguos Beliefs” they justify the Dempster-Schafer rule based on a maximum likelihood procedure. This note shows in the context of Schmeidler-Gilboa preferences under uncertainty, that the Dempster-Schafer rule is in general not ex-ante optimal. This contrasts with Brown’s result that Bayes’ rule is ex-ante optimal for standard Savage preferences with additive probabilities.
Resumo:
We prove non-emptiness of the alpha-core for balanced games with non-ordered preferences, extending and generalizing in several aspects the results of Scarf (1971), Border (1984), Florenzano (1989), Yannelis (1991) and Kajii (1992). In particular we answer an open question in Kajii (1992) regarding the applicability of the non-emptiness results to models with infinite dimensional strategy spaces. We provide two models with Knightian and voting preferences for which the results of Scarf (1971) and Kajii (1992) cannot be applied while our non-emptiness result applies.
Resumo:
Poultry meat and its derivatives are among the foodstuffs considered by environmental health authorities to present the highest risks to the public. A total of 185 samples were collected in five monthly batches, from different processing stages in a sausage plant that uses mechanically-deboned chicken meat (MDCM) and tested for the presence of Salmonella. Enrichment was carried out in both Kauffman tetrathionate broth and Rappaport-Vassiliadis broth and isolation on Salmonella-Shigella agar and brilliant-green agar. Live Salmonella bacteria were isolated from six samples of the raw meat and from the emulsion, in batches three, four and five, but not from any sample in batches one or two. The six isolated strains were all classified as Salmonella Albany, which has not previously been reported in MDCM. of the two enrichment broths, Rappaport-Vassiliadis gave the better results. The Pattern of contamination suggests a probable common source, given that a new supplier was used in the third, fourth, and fifth months. It was also shown that the industrial cooking was effective in preventing Salmonella surviving in the final product.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)