968 resultados para Non-leaf tissue


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The frontline management of non-oncogene addicted non-small cell lung cancer (NSCLC) involves immunotherapy (ICI) alone or combined with chemotherapy (CT-ICI). As therapeutic options expand, refining NSCLC genotyping gains paramount importance. The dynamic landscape of KRAS-positive NSCLC presents a spectrum of treatment options, including ICI, targeted therapy, and combination strategies currently under investigation. Methods: The two-year RASLUNG project, featuring both retrospective and prospective cohorts, aimed to analyze the predictive and prognostic impact of KRAS mutations on tumor tissue and circulating DNA (ctDNA). Secondary objectives included assessing the roles of co-mutations and longitudinal changes in KRAS mutant copies concerning treatment response and survival outcomes. An external validation study confirmed the prognostic or predictive significance of co-mutations. Results: In the prospective cohort (n=24), patients with liver metastases exhibited significantly elevated ctDNA levels(p=0.01), while those with >3 metastatic sites showed increased Allele Frequency (AF) (P=0.002). Median overall survival (OS) was 7.5 months, progression-free survival (PFS) was 4.0 months, and the objective response rate (ORR) was 33.3%. Higher AF correlated with an increased risk of death (HR 1.04, p = 0.03), though not progression. Notably, a reduction in plasma DNA levels was significantly associated with objective response(p=0.01). In the retrospective cohort, KRAS and STK11 mutations co-occurred in 14/21 patients (p=0.053). STK11 mutations were independently detrimental to OS (HR 1.97, p=0.025) after adjusting for various factors. KRAS tissue AF did not correlate with OS or PFS. Within the validation dataset, STK11 mutations were significantly associated with an increased risk of death in univariate (HR 2.01, p<0.001) and multivariate models (HR 1.66, p=0.001) after adjustments. Conclusion: The RAS-Lung Project, employing innovative genotyping techniques, underscores the significance of comprehensive NSCLC genotyping. Tailored next-generation sequencing (NGS) and ctDNA monitoring may offer potential benefits in navigating the evolving landscape of KRAS-positive NSCLC treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crohn's disease (CD) is associated with complex pathogenic pathways involving defects in apoptosis mechanisms. Recently, mesenteric adipose tissue (MAT) has been associated with CD ethiopathology, since adipose thickening is detected close to the affected intestinal area. However, the potential role of altered apoptosis in MAT of CD has not been addressed. To evaluate apoptosis in the intestinal mucosa and MAT of patients with CD. Samples of intestinal mucosa and MAT from patients with ileocecal CD and from non-inflammatory bowel diseases patients (controls) were studied. Apoptosis was assessed by TUNEL assay and correlated with the adipocytes histological morphometric analysis. The transcriptional and protein analysis of selected genes and proteins related to apoptosis were determined. TUNEL assay showed fewer apoptotic cells in CD, when compared to the control groups, both in the intestinal mucosa and in MAT. In addition, the number of apoptotic cells (TUNEL) correlated significantly with the area and perimeter of the adipose cells in MAT. Transcriptomic and proteomic analysis reveal a significantly lower transcript and protein levels of Bax in the intestinal mucosa of CD, compared to the controls; low protein levels of Bax were found localized in the lamina propria and not in the epithelium of this tissue. Furthermore, higher level of Bcl-2 and low level of Caspase 3 were seen in the MAT of CD patients. The defective apoptosis in MAT may explain the singular morphological characteristics of this tissue in CD, which may be implicated in the pathophysiology of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alterations due to aging in the peripheral nerves can affect the physiology of these structures. Thus, the purpose of the present study was to describe the activity of the MMP-2 and MMP-9, as well as the structure and composition of the extracellular matrix of the rat sciatic nerve during maturation and aging. Our results have shown that the extracellular matrix of the sciatic nerve of 30-, 180- and 730-day-old Wistar rats present ultrastructural, morphometrical and biochemical changes during aging. The perineurium was the structure most affected by age, as evidenced by a decrease in thickness and in collagen fibril content. Cytochemical analysis detected proteoglycans in the basal membrane of Schwann cells and around perineural cells, as well as on the collagen fibrils of the perineurium and endoneurium at all ages. Biochemical analyses showed that the quantity of non-collagenous proteins was higher in 730-day-old animals compared to other ages, while the uronic acid content was higher in 30-day-old animals. Morphometrical analysis detected greater numbers of myelinated fibers and increased myelin thickness in 180-day-old animals. Zymography analysis detected greater amounts and activity of MMP-2 and MMP-9 in 180- and 730-day-old animals compared to younger rats. In conclusion, our results showed changes in the structural organization and composition of extracellular matrix of the sciatic nerve during aging, such as increase in the non-collagenous protein content and higher MMP-2 and MMP-9 activity, decrease in uronic acid concentration and in collagen fibril content in the perineurium, as well as degeneration of nerve fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the influence of Pinus afforestation on the structure of leaf-litter ant communities in the southeastern Brazilian Atlantic Forest, studying an old secondary forest and a nearly 30 year-old never managed Pinus elliottii reforested area. A total of 12,826 individual ants distributed among 95 species and 32 genera were obtained from 50 1 m² samples/ habitat. Of these, 60 species were recorded in the pine plantation and 82 in the area of Atlantic forest; almost 50% of the species found in the secondary forest area were also present in the pine plantation. The number of species per sample was significantly higher in the secondary forest than in the pine plantation. Forest-adapted taxa are the most responsible for ant species richness differences between areas, and the pine plantation is richer in species classified as soil or litter omnivorous-dominants. The specialized ant predators registered in the pine plantation, as seven Dacetini, two Basiceros, two Attini and two Discothyrea, belong to widely distributed species. The NMDS (non-metric multidimensional scaling) ordination also suggested strong differences in similarity among samples of the two areas. Furthermore, this analysis indicated higher sample heterogeneity in the secondary forest, with two clusters of species, while in the pine plantation the species belong to a single cluster. We applied the ant mosaic hypothesis to explain the distribution of the leaf-litter fauna and spatial autocorrelation tests among samples. We argue that the results are likely related to differences in quality and distribution of the leaf-litter between the pine plantation and the secondary area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, we have demonstrated that treatment of experimental diabetes with a decoction of Bauhinia forficata leaves is beneficial. In this study, we prepared a two-fold concentrate of this extract and tested its effects on physiological, biochemical and toxicity markers in streptozotocin-diabetic rats. Dried and ground leaves were extracted with warm 70% hydroethanol and the filtrate concentrated by evaporation at 50 degrees C. This solution was mixed with colloidal silicon dioxide (Tixosil-333 (R)) and dried in a spouted bed (BfT). Rats were treated with water, insulin and Tixosil particles at low or high doses, alone or coated with dried BfT. Animals were periodically weighed and monitored for water and food intake; urinary volume, glucose, urea and protein; blood glucose, serum lipids, liver toxicity markers transaminase and phosphatase and masses of adipose tissue and skeletal muscle. Insulin treatment gave best rat growth and lowest values for all other markers. No other treatment affected any diabetic marker, but the enzyme activities were changed by diabetes and BfT. Thus, BfT toxicity could arise from secondary products of plant constituents or Tixosil interaction. Therefore, BfT prepared in the spouted bed as described, is unsuitable for treatment of diabetes, which implies that the method of preparation of any medicine is critical for its efficacy and toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-alcoholic fatty liver disease (NAFLD) encompasses the whole spectrum of steatosis, nonalcoholic steatohepatitis (NASH), and NASH-related cirrhosis (NASH/Cir). Although molecular advances have been made in this field, the pathogenesis of NAFLD is not completely understood. The gene expression profiling associated to NASH/Cir was assessed, in an attempt to better characterize the pathways involved in its etiopathogenesis. Methods: In the first step, we used cDNA microarray to evaluate the gene expression profiles in normal liver (n=3) and NASH/Cir samples (n=3) by GeneSifter (TM) analysis to identify differentially expressed genes and biological pathways. Second, tissue microarray was used to determine immunohistochemical expression of phosphorylated mTOR and 4E-BP1 in 11 normal liver samples, 10 NASH/Cir samples and in 37 samples of cirrhosis of other etiologies to further explore the involvement of the mTOR pathway evidenced by the gene expression analysis. Results: 138 and 106 genes were, respectively, up and down regulated in NASH/Cir in comparison to normal liver. Among the 9 pathways identified as significantly modulated in NASH/Cir, the participation of the mTOR pathway was confirmed, since expression of cytoplasmic and membrane phospho-mTOR were higher in NASH/Cir in comparison to cirrhosis of other etiologies and to normal liver. Conclusions: Recent findings have suggested a role for the cellular ""nutrient sensor"" mTOR in NAFLD and the present study corroborates the participation of this pathway in NASH/Cir. Phospho-mTOR evaluation might be of clinical utility as a potential marker for identification of NASH/Cir in cases mistakenly considered as cryptogenic cirrhosis owing to paucity of clinical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resuspended soil and other airborne particles adhered to the leaf surface affect the chemical composition of the plant. A well-defined cleaning procedure is necessary to avoid this problem, providing a correct assessment of the inherent chemical composition of bromeliads. To evaluate the influence of a washing procedure, INAA was applied for determining chemical elements in the leaves of bromeliads from Vriesea carinata species, both non-washed and washed with Alconox, EDTA and bi-distilled water. Br, Ce, Hg, La, Sc, Se, Sm and Th showed higher mass fractions in non-washed leaves. The washing procedure removed the exogenous material without leaching chemical elements from inside the tissues.