963 resultados para Non isothermal kinetic


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the dissipation of heat generated due to the formation of pinholes that cause local hotspots in the catalyst layer of the Polymer Electrolyte Fuel Cell, a two-phase non-isothermal model has been developed by coupling Darcy’s law with heat transport. The domain under consideration is a section of the membrane electrode assembly with a half-channel and a half-rib. Five potential locations where a pinhole might form were analyzed: at the midplane of the channel, midway between the channel midplane and the channel wall, at the channel or rib wall, midway between the rib midplane and the channel wall, at the midplane of the rib. In the first part of this work, a preliminary thermal model was developed. The model was then refined to account for the two-phase effects. A sensitivity study was done to evaluate the effect of the following properties on the maximum temperature in the domain: Catalyst layer thermal conductivity, the Microporous layer thermal conductivity, the anisotropy factor of the Catalyst layer thermal conductivity, the Porous transport layer porosity, the liquid water distribution and the thickness of the membrane and porous layers. Accounting for the two-phase effects, a slight cooling effect was observed across all hotspot locations. The thermal properties of the catalyst layer were shown to have a limited impact on the maximum temperature in the catalyst layer of new fuel cells without pinhole. However, as hotspots start to appear, thermal properties play a more significant role in mitigating the thermal runaway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Attention is drawn to the feasibility of using isothermal calorimetry for the characterization of enzyme reactions under conditions bearing greater relevance to the crowded biological environment, where kinetic parameters are likely to differ significantly from those obtained by classical enzyme kinetic studies in dilute solution. An outline of the application of isothermal calorimetry to the determination of enzyme kinetic parameters is followed by considerations of the nature and consequences of crowding effects in enzyme catalysis. Some of those effects of thermodynamic non-ideality are then illustrated by means of experimental results from calorimetric studies of the effect of molecular crowding on the kinetics of catalysis by rabbit muscle pyruvate kinase. This review concludes with a discussion of the potential of isothermal calorimetry for the experimental determination of kinetic parameters for enzymes either in biological environments or at least in media that should provide reasonable approximations of the crowded conditions encountered in vivo. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone), PEDEKK, were investigated by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization behavior. The activation energies were determined as 425 and 176 KJ/mol for isothermal and nonisothermal crystallization, respectively. The equilibrium melting point T-m(o) was estimated to be 444 degrees C by using the Hoffman-Weeks approach. The observed crystallization characteristics of PEDEKK were compared with those of the other members of the poly(arpl ether ketone) family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a wide range of conditions (NH3 partial pressure, 0.01-0.12 atm; O-2 partial pressure, 0.10-0.88 atm; temperature, 523-673 K; contact time, 0.3-0.7 ms). The elementary surface reactions used in developing the mechanism were chosen based on the literature data concerning ammonia oxidation on a Pt catalyst. Parameter estimates for the kinetic model were obtained using multi-response least squares regression analysis using the isothermal plug-flow reactor approximation. To evaluate the model, the behavior of a microstructured reactor was simulated by means of a complete Navier-Stokes model accounting for the reactions on the catalyst surface and the effect of temperature on the physico-chemical properties of the reacting mixture. In this way, the effect of the catalytic wall temperature non-uniformity and the effect of a boundary layer on the ammonia conversion and selectivity were examined. After further optimization of appropriate kinetic parameters, the calculated selectivities and product yields agree very well with the values actually measured in the microreactor. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interpolymer complexes (IPCs) formed between complimentary polymers in solution have shown a wide range of applications from drug delivery to biosensors. This work describes the combined use of isothermal titration calorimetry and surface plasmon resonance to investigate the thermodynamic and kinetic processes during hydrogen-bonded interpolymer complexation. Varied polymers that are commonly used in layer-by-layer coatings and pharmaceutical preparations were selected to span a range of chemical functionalities including some known IPCs previously characterized by other techniques, and other polymer combinations with unknown outcomes. This work is the first to comprehensively detail the thermodynamic and kinetic data of hydrogen bonded IPCs, aiding understanding and detailed characterization of the complexes. The applicability of the two techniques in determining thermodynamic, gravimetric and kinetic properties of IPCs is considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TR beta-selecfive agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper agricultural waste; Canarium schweinfurthii was explored for the sequestering of Fe and Pb ions from wastewater solution after carbonization and chemical treatment at 400oC. Optimum time of 30 and 150 min with percentage removal of 95 and 98% at optimum pH of 2 and 6 was obtained for Fe and Pb ions. Kinetics model followed pseudofirst order as sum of absolute error (EABS) between Qe and Qc greater than that of pseudo second order. Parameters evaluated from isothermal equation (Freundlich and Langmuir) showed that KL and QO for Fe > Pb and R2 for Langmuir> Freundlich. The study reveals the suitability of the adsorbent for sequestering of Fe and Pb ions from industrial wastewater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.