952 resultados para Newtonian equations
Resumo:
We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.
Resumo:
Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. The assessment of body composition is essential in order to maintain acceptable growth using the following techniques: Dual-energy X-ray absorptiometry (DEXA), bio-impedance-analysis (BIA) and anthropometric measurements (skinfold thickness skin), the latter being most easily available and most cost effective. Objectives: To assess the accuracy of skinfold equations in estimating percentage body fat (%BF) in children with inflammatory bowel disease (IBD), compared with assessment of body fat dual energy X-ray absorptiometry (DEXA). Methods: Twenty-one patients (11 females, 10 males; mean age: 14.3 years, range 12 - 16 years) with IBD (Crohn's disease n = 15, ulcerative colitis n = 6)). Estimated%BF was computed using 6 established equations based on the triceps, biceps, subscapular and suprailiac skinfolds (Deurenberg, Weststrate, Slaughter, Durnin & Rahaman, Johnston, Brook) and compared to DEXA. Concordance analysis was performed using Lin's concordance correlation and the Bland-Altman limits of agreement method. Results: Durnin & Rahaman's equation shows a higher Lin's concordance coefficient with a small difference amongst raw values for skinfolds and DEXA compared to the other equations. Correlation coefficient between mean and difference is close to zero with a non-significant Bradley-Blackwood test. Conclusion: Body composition in paediatric IBD patients using the Durnin & Rahaman skinfold-equation adequately reflects values obtained by DEXA.
Resumo:
The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.
Resumo:
Postprint (published version)
Resumo:
We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.
Resumo:
We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.
Resumo:
We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
Abstract
Resumo:
BACKGROUND: So far, none of the existing methods on Murray's law deal with the non-Newtonian behavior of blood flow although the non-Newtonian approach for blood flow modelling looks more accurate. MODELING: In the present paper, Murray's law which is applicable to an arterial bifurcation, is generalized to a non-Newtonian blood flow model (power-law model). When the vessel size reaches the capillary limitation, blood can be modeled using a non-Newtonian constitutive equation. It is assumed two different constraints in addition to the pumping power: the volume constraint or the surface constraint (related to the internal surface of the vessel). For a seek of generality, the relationships are given for an arbitrary number of daughter vessels. It is shown that for a cost function including the volume constraint, classical Murray's law remains valid (i.e. SigmaR(c) = cste with c = 3 is verified and is independent of n, the dimensionless index in the viscosity equation; R being the radius of the vessel). On the contrary, for a cost function including the surface constraint, different values of c may be calculated depending on the value of n. RESULTS: We find that c varies for blood from 2.42 to 3 depending on the constraint and the fluid properties. For the Newtonian model, the surface constraint leads to c = 2.5. The cost function (based on the surface constraint) can be related to entropy generation, by dividing it by the temperature. CONCLUSION: It is demonstrated that the entropy generated in all the daughter vessels is greater than the entropy generated in the parent vessel. Furthermore, it is shown that the difference of entropy generation between the parent and daughter vessels is smaller for a non-Newtonian fluid than for a Newtonian fluid.
Resumo:
Normally either the Güntelberg or Davies equation is used to predict activity coefficients of electrolytes in dilute solutions when no better equation is available. The validity of these equations and, additionally, of the parameter-free equations used in the Bates-Guggenheim convention and in the Pitzerformalism for activity coefficients were tested with experimentally determined activity coefficients of HCl, HBr, HI, LiCl, NaCl, KCl, RbCl, CsCl, NH4Cl, LiBr,NaBr and KBr in aqueous solutions at 298.15 K. The experimental activity coefficients of these electrolytes can be usually reproduced within experimental errorby means of a two-parameter equation of the Hückel type. The best Hückel equations were also determined for all electrolytes considered. The data used in the calculations of this study cover almost all reliable galvanic cell results available in the literature for the electrolytes considered. The results of the calculations reveal that the parameter-free activity coefficient equations can only beused for very dilute electrolyte solutions in thermodynamic studies.