890 resultados para Net heat gain and surface temprature
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
This Review examined socioeconomic inequalities in intakes of dietary factors associated with weight gain, overweight/obesity among adults in Europe. Literature searches of studies published between 1990 and 2007 examining socioeconomic position (SEP) and the consumption of energy, fat, fibre, fruit, vegetables, energy-rich drinks and meal patterns were conducted. Forty-seven articles met the inclusion criteria. The direction of associations between SEP and energy intakes were inconsistent. Approximately half the associations examined between SEP and fat intakes showed higher total fat intakes among socioeconomically disadvantaged groups. There was some evidence that these groups consume a diet lower in fibre. The most consistent evidence of dietary inequalities was for fruit and vegetable consumption; lower socioeconomic groups were less likely to consume fruit and vegetables. Differences in energy, fat and fibre intakes (when found) were small-to-moderate in magnitude; however, differences were moderate-to-large for fruit and vegetable intakes. Socioeconomic inequalities in the consumption of energy-rich drinks and meal patterns were relatively under-studied compared with other dietary factors. There were no regional or gender differences in the direction and magnitude of the inequalities in the dietary factors examined. The findings suggest that dietary behaviours may contribute to socioeconomic inequalities in overweight/obesity in Europe. However, there is only consistent evidence that fruit and vegetables may make an important contribution to inequalities in weight status across European regions.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
This two-storey office building and upper floor interior fit-out, completed for the 25th anniversary of Adelaide-based construction firm, Badge Constructions, is a signature building for the client, and its recently established Brisbane-based operations, and a showpiece for their commercial and industrial construction prowess and dynamic, collaborative and transparent work ethic. Situated in the industrial precinct of Bulimba’s Oxford Street, the building is a continuation of the street’s nearby commercial heart, whilst its architectural language references the adjacent industrial structures. The building’s shed-like skillion roof and western wall have been considered as a folded plane, allowing space to be considered as the inhabitation of the inner surface of this plane. The analogy of a lined garment, tailored to suit its wearer, clarifies the relationship between the western façade plane’s unadorned, monochromatic outer surface and the coloured and patterned inner surface, celebrating inhabitation. The use of typically external construction materials are re-positioned as an integral part of the building’s interior fit-out, alluding to Badge’s construction repertoire, and weakening traditional barriers between interior and exterior commercial space. In reference to its Queensland context, the external glazed line of the building is pulled back from the street, providing an eastern verandah edge and a northern court, as a part of the public realm. The upper floor office incorporates a cantilevered outdoor mezzanine within the northern court, whilst the adjacent reception area and stairwell utilises clear glazing in order to visually connect to the street. The building is designed to take advantage of natural light to the east, whilst shading habitable spaces from the north, a building strategy that reduces solar heat gain and energy consumption. Placement of the building’s amenities core to the west provides substantial bracing and allows maximum activation of the north and east street edge. A collaborative design process has resulted in an affordable commercial building with a high level of design resolution and relationship to its Brisbane context, while also challenging the traditional relationships between exterior and interior commercial space, and informed client and consultant team of allied disciplines.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.
Resumo:
Higher ambient temperatures will increase heat stress on workers, leading to impacts upon their individual health and productivity. In particular, research has indicated that higher ambient temperatures can increase the prevalence of urolithiasis. This thesis examines the relationship between ambient heat exposure and urolithiasis among outdoor workers in a shipbuilding company in Guangzhou, China, and makes recommendations for minimising the possible impacts of high ambient temperatures on urolithiasis. A retrospective 1:4 matched case-control study was performed to investigate the association between ambient heat exposure and urolithiasis. Ambient heat exposure was characterised by total exposure time, type of work, department and length of service. The data were obtained from the affiliated hospital of the shipbuilding company under study for the period 2003 to 2010. A conditional logistic regression model was used to estimate the association between heat exposure and urolithiasis. This study found that the odds ratio (OR) of urolithiasis for total exposure time was 1.5 (95% confidence interval (CI): 1.2–1.8). Eight types of work in the shipbuilding company were investigated, including welder, assembler, production security and quality inspector, planing machine operator, spray painter, gas-cutting worker and indoor employee. Five out of eight types of work had significantly higher risks for urolithiasis, and four of the five mainly consisted of outdoors work with ORs of 4.4 (95% CI: 1.7–11.4) for spray painter, 3.8 (95% CI: 1.9–7.2) for welder, 2.7 (95% CI: 1.4–5.0) for production security and quality inspector, and 2.2 (95% CI: 1.1–4.3) for assembler, compared to the reference group (indoor employee). Workers with abnormal blood pressure (hypertension) were more likely to have urolithiasis with an OR of 1.6 (95% CI: 1.0–2.5) compared to those without hypertension. This study contributes to the understanding of the association between ambient heat exposure and urolithiasis among outdoor workers in China. In the context of global climate change, this is particularly important because rising temperatures are expected to increase the prevalence of urolithiasis among outdoor workers, putting greater pressure on productivity, occupational health management and health care systems. The results of this study have clear implications for public health policy and planning, as they indicate that more attention is required to protect outdoor workers from heat-related urolithiasis.
Resumo:
Aim: Maternal obesity is associated with increased risk of adverse outcomes for mothers and offspring. Strategies to better manage maternal obesity are urgently needed; however, there is little evidence to assist the development of nutrition interventions during antenatal care. The present study aimed to assess maternal weight gain and dietary intakes of overweight and obese women participating in an exercise trial. Results will assist the development of interventions for the management of maternal overweight and obesity. Methods: Fifty overweight and obese pregnant women receiving antenatal care were recruited and provided dietary and weight data at baseline (12 weeks), 28 weeks, 36 weeks gestation and 6 weeks post-partum. Data collected were compared with current nutritional and weight gain recommendations. Associations used Pearson's correlation coefficient, and ANOVA assessed dietary changes over time, P < 0.05. Results: Mean prepregnancy body mass index was 34.4 ± 6.6 kg/m2. Gestational weight gain was 10.6 ± 6 kg with a wide range (−4.1 to 23.0 kg). 52% of women gained excessive weight (>11.5 kg for overweight and >9 kg for obese women). Gestational weight gain correlated with post-partum weight retention (P < 0.001). Dietary intakes did not change significantly during pregnancy. No women achieved dietary fat or dietary iron recommendations, only 11% achieved adequate dietary folate, and 38% achieved adequate dietary calcium. Very few women achieved recommended food group servings for pregnancy, with 83% consuming excess servings of non-core foods. Conclusion: Results provide evidence that early intervention and personalised support for obese pregnant women may help achieve individualised goals for maternal weight gain and dietary adequacy, but this needs to be tested in a clinical setting.