917 resultados para Natural-products
Resumo:
首次采用高速逆流色谱技术分离了车前子中的两个苯乙醇昔化合物,所用的溶剂系统简单,快速,高效,避免了传统方法分离单体化合物耗时以及与固态载体表面不可逆吸附等缺点,为大量制备分离这两个化合物提供了一种简单有效的方法。利用高效液相色谱一大气压化学电离质谱联用技术,对其化学结构进行推断和确认,提出了两种化合物可能的质谱碎裂规律。采用三种不同的抗氧化活性体外评价体系,首次对车前子80%甲醇提取物以及从中分离得到的两个化合物的抗氧化活性进行了系统研究。研究结果表明:它们都具有良好的抗氧化活性,而且证明车前子80%甲醇提取物的抗氧化活性主要来自这两个化合物的贡献。采用电喷雾质谱技术,对车前草和肉从蓉两种药材中的苯乙醇营化合物的特征质谱行为进行了系统研究,总结了该类化合物特征的质谱裂解规律,建立了这一类化合物的快速鉴定的质谱新方法。首次通过高效液相色谱一电喷雾质谱联用技术,研究了车前草中苯乙醇营化合物,建立了一种快速、简便地鉴别车前草粗提物中苯乙醇昔化合物的新方法。采用高效液相色谱一电喷雾质谱联用技术(蒸发光检测器和电喷雾质谱检测器),对三七,人参和西洋参中的皂营类化合物进行了系统的分析研究,并建立了三种中药粗提物中皂营类化合物快速检测的新方法。
Resumo:
质谱技术以其灵敏度高、样品需求量少、快速准确的特点在生物大分子体系和天然产物的化学成分研究中起着极为重要的作用。特别是软电离质谱技术的发展,大大简化了化合物的测定过程,提高了分析研究速度,为分析植物及食物中的结构信息提供了快速便捷的方法。HPLC-ESI-MSn是90年代发展成熟的分析技术,它集液相色谱的高分离能力与质谱的高灵敏度和高专属性于一体,已成为包括药物微量杂质、药物降解产物、药代代谢动力学研究、组合化学合成产物高通量分析以及天然产物的化学筛选在内的现代药学研究领域最强有力的分析工具之一。本文首先采用电喷雾多级串联质谱技术,系统地研究了负离子条件下黄酮普元、黄酮醇普元以及二氢黄酮普元等化合物的特征质谱行为,并对中药黄芬中三种黄酮昔化合物进行了研究。利用这些特征碎片离子,可以简便快捷的区分结构类似的黄酮类化合物及其同分异构体。通过对黄酮C一昔类化合物的电喷雾串联质谱(ESI-MSn)研究,提出黄酮C-苷类化合物的特征碎裂规律,证明〔M-H-60]-,〔M-H-90]-,〔M-H-120〕-为黄酮C-苷类化合物的特征离子。为鉴定植物粗提物中黄酮类化合物奠定了基础。之后我们进一步采用高效液相色谱与电喷雾质谱联用技术,在线区分混合物中的黄酮类化合物的同分异构体。根据黄酮类化合物的电喷雾质谱规律以及化合物的色谱保留时间分析鉴定了黄答中的七种黄酮类化合物。建立了一种有效检测黄芩(Scutellariabaicalensis Georgi)中黄酮类化合物的快速灵敏的分析方法,为建立黄答药材的质量控制标准提供了借鉴。对于黄酮类化合物灵敏、快速和准确的分析方法的建立,不仅为黄酮类化合物的结构的快速鉴定提供了一定的依据,而且对生药的鉴别和制剂的质控起到重要的作用。利用电喷雾多级串联质谱技术,对化学结构相似的黄酮营、二氢黄酮营和黄酮醇昔类化合物进行了对比研究。并且首次利用高分辨质谱FTICR-MS及SORI-CID技术对naringin进行了质谱研究。利用其超高分辩率、准确质量确证了中性碎片丢失,进一步证明了我们对其碎裂机理的推断。之后,我们通过金属离子与黄酮昔溶液混合后,采用电喷雾串联质潜法进行测定。实验表明通过人为加入某些金属离子如Li+,Na+和K+,特别是Li+可以提高黄酮昔类化合物分析灵敏度,从而提供较多结构信息。并且在串联质谱中表现不同的碎裂行为,为黄酮类化合物结构分析提供补充信息。研究表明结合〔M-H]-,〔M+Na〕+,〔M+Li〕+离子串联质潜提供的信息,能够有效的鉴定黄酮普的结构。本文通过电喷雾串联质谱(ESI-MSn)和液质联机技术(HPLC-ESI-MS/MS)研究了原小聚碱型生物碱。首次利用高分辨质谱FTICR-MS和SORI-CTD技术对原小桨碱型生物碱进行了高分辨质谱研究,提出了各种碎片离子的碎裂途径,并总结了原小聚碱型生物碱的质谱碎裂规律,为鉴定此类型的生物碱提供了依据。之后通过电喷雾串联质谱研究了四种生物碱化合物质谱行为。最后我们利用液质联机技术(HPLC-ESI-MSn),通过与标准品的液相保留时间对照及原小聚碱型生物碱的质谱碎裂规律,建立了分析鉴定常用中药中原小聚碱型生物碱的快捷方法。并通过选择离子监控技术(SIM)提高了对于同分异构体的分离鉴定。通过色谱UV吸收峰定量研究了这四种药用植物中小璧碱和巴马汀的含量,为临床应用提供一定的化学基础,为建立中药质量控制标准及植物分类学提供一定的依据。采用HPLC法考察了常见的黄连药对组合煎煮对黄连中小聚碱、巴马丁煎出量的影响。为制药工艺的优化奠定了基础。之后我们以中药理论为指导,按药物性味对改良半夏泻心汤中各药进行分组,利用高效液相色谱分析了不同配伍条件下小璧碱、巴马丁煎出量的变化。为组方的合理性和科学性提供了一定的化学物质基础依据。
Resumo:
手性胺是合成天然产物和手性药物的重要中间体,亚胺和烯胺的不对称催化还原是制备手性胺最直接有效的方式之一。手性有机小分子催化的亚胺不对称还原已取得了可喜的进展,但到目前为止,有机小分子催化的烯胺不对称还原,尤其是环状烯胺的不对称还原还少有报道。 本研究从手性叔丁基亚磺酰胺出发,设计并合成了一系列含有叔丁基亚磺酰基的新型脲类及硫脲类催化剂,并将其用于催化三氯硅烷对烯胺的不对称还原,尤其是1, 4-二氢吡啶酯类环状烯胺的不对称还原。通过对催化反应条件的优化,发现当添加1eq H2O时,反应收率和对映选择性明显提高,获得高达99% 的收率和88% ee,同时也取得了很好的非对映选择性(dr = 8:92)。首次实现了三氯硅烷对1, 4-二氢吡啶酯类环状烯胺的高立体选择性还原。 通过机理方面的研究,我们推测反应过程中可能是:首先,底物1, 4-二氢吡啶酯与催化剂形成氢键而被活化,当加入添加剂后,添加剂与三氯硅烷反应释放出一个质子,然后受活化的1, 4-二氢吡啶酯捕获该质子转变成更活泼的亚胺正离子的中间体。随后,在催化剂上的手性硫氧的活化下,三氯硅烷的负氢加成到受活化的亚胺正离子的中间体上,最后生成比较有利的反式产物1, 4, 5, 6-四氢吡啶乙酯。 Calalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which is an important class of intermediates for the synthesis of natural products and chiral drugs. Significant progresses have been made in organocatalytic enantioselective reduction of imines. However, asymmetric reduction of enamines, especially of cyclic enamines catalyzed by small organocatalysts has scarcely been reported. In this study, starting from chiral tert-butanesulfinamide, a series of structurally simple tert-butanesulfinyl urea and thiourea organocatalysts were developed and employed in asymmetric reduction of enamines by triclorosilane, particularly in the reduction of cyclic enamines such as Hantzsch 1, 4-dihydropyridines. During the optimization of reaction condictions, we found that the addition of one equivalent of H2O could significantly improve the yields and enatioselectivities. Under optimal condictions, 99% yield, up to 88% ee, and 8:92 diastereomeric ratio were obtained. Thus, we have for the first time realized the highly stereoselective reduction of Hantzsch 1, 4-dihydropyridines catalyzed by triclorosilane. As for the mechanism, we speculate that the Hantzsch 1, 4-dihydropyridine was firstly engaged with the catalyst through hydrogen bond. The proton released from the reaction of the additive and triclorosilane next added to one of the C=C bond to make an active iminium intermediate, which was then attacked by the nucleophlic hydrogen of HSiCl3 activated by the Lewis basic sulfinyl function of the catalyst to provide superior trans-1, 4, 5, 6-tetrahydropyridine products.
Resumo:
胺及其衍生物是很多重要生物活性分子的结构单元,是合成天然产物和手性药物的重要中间体。 直接还原胺化由于其合成步骤简单而成为制备二级胺和三级胺的简便方法。为了发展一种较为简便的直接还原胺化反应,我们把研究的重点放在开发一种简便实用的有机小分子催化方法上。由文献调研可知,现已报道的直接还原胺化方法大多是催化醛或酮与一级胺或者脂肪二级胺的直接还原胺化,而醛或酮与芳香二级胺的直接还原胺化却尚无报道。在本文中,我们发现用简单的四甲基乙二胺(TEMED)在室温下以二氯甲烷为溶剂即可催化三氯氢硅对酮和芳香二级胺之间的直接还原胺化反应,并取得了高达92%的收率。该反应条件温和,底物普适性广,各种类型的酮均可以与芳香二级胺进行直接还原胺化,并且得到比较满意的收率。 同时,我们从手性Sulfoximine出发,设计和合成了一系列的Sulfoximine类新衍生物,并将其应用于间接还原胺化反应中。遗憾的是我们并没有得到预期的不对称催化效果。 Amines and their derivatives are basic structural motifs in natural products and pharmaceuticals and highly versatile building blocks for various organic substrates. Direct reductive amination (DRA) is a convenient method for the preparation of secondary and tertiary amines owing to its operational simplicity. In an effort to develop a simple and convenient procedure for direct reductive amination reaction, we focused our study on search for a mild and efficient organocatalytic system. In the literature, there are many reports concerning DRA between aldehydes or ketones and either primary amines or secondary aliphatic amines. But there are no reports concerning DRA between aldehydes or ketones and secondary aromatic amines. In this study, we have developed a highly practical method for the synthesis of tertiary amines by the direct reductive amination of ketones and secondary aromatic amines with tetramethylethylenediamine (TEMED) as the catalyst using HSiCl3 as the reducing agent in dichloromethane (affording up to 92% yield). This method can be carried out under mild conditions and is compatible with many functional groups. A variety of ketones were efficiently aminated with secondary aromatic amines to afford the corresponding amines in good to excellent yields. Starting from chiral sulfoximine, we designed and synthesized a series of new sulfoximine derivatives and tested their efficiencies as asymmetric organocatalysts for the reduction of imines, which, unfortunately, only exhibited low catalytic activity and enantioselectivity.
Resumo:
手性胺是合成天然产物和手性药物的重要中间体,亚胺的不对称催化还原是制备光学活性手性胺的最直接有效的方法之一。但是,由于C=N双键的反应活性较弱以及容易发生E/Z异构等问题,亚胺的不对称催化还原具有很大的挑战性,既具有高对映选择性又具有宽广底物普适性的催化剂很少。 本文分别由手性脯氨酸、哌啶酸、哌嗪酸以及氨基醇出发,设计和合成了一系列结构新颖、合成简便、性能优良的酰胺类有机小分子路易斯碱催化剂,以廉价的三氯氢硅为氢源,用这些催化剂催化亚胺不对称还原,得到了非常优良的收率、对映选择性和前所未有的底物普适性。 文献研究认为,除N-甲酰基外,分子内含有芳香酰胺是能催化亚胺还原的有机小分子路易斯碱催化剂具有较高对映选择性的必要条件,我们研究发现N-甲酰脯氨酸非芳香酰胺类催化剂(包括结构简单的C2-对称型脯氨酰胺类催化剂),对N-芳基酮亚胺的还原可获得达86%的对映选择性,远高于同类芳香酰胺催化剂,证明N-甲酰非芳香酰胺类路易斯碱催化剂在亚胺还原中也能得到高的对映选择性。 在进一步研究中,我们以手性六元哌啶酸为模板,分别设计合成了N-甲酰哌啶酸芳香酰胺和N-甲酰哌啶酸非芳香酰胺两类催化剂,其中芳香酰胺催化剂(S)-N-(甲酰基)哌啶-2-酸-1-萘基酰胺(28)和非芳香酰胺催化剂(2S,1'S,2'S)-N-(甲酰基)-哌啶-2-酸(1',2'-二苯基-2'-乙酰氧基-乙基)酰胺(30)显示出非常优良的催化活性和对映选择性,对于N-芳基芳香酮亚胺的还原,无论是缺电子体系还是富电子体系,绝大部分都能得到很高的收率(达98%)和对映选择性(达96% ee)。特别值得一提的是30对一些脂肪族亚胺和α,β-不饱和亚胺的还原,虽然底物为E/Z混合物,也能得到很高的收率(达93%)和对映选择性(达95% ee),这样的底物普适性在过渡金属催化体系中也是前所未有的。 现有的催化亚胺还原的高对映选择性催化体系大多仅适用于甲基酮亚胺底物,对位阻较大的非甲基酮亚胺很难获得好的结果。我们以L-哌嗪酸为模板设计和合成出的(S)-N-(甲酰基)-哌嗪-2-酸-4-对叔丁基苯磺酰基-苯基酰胺不但对N-芳基甲基酮亚胺有很好的对映选择性(达90% ee),而且对于大位阻的N-芳基非甲基酮亚胺有更好的对映选择性(达97% ee)。该催化剂与30在底物普适性方面具有很好的互补性。 我们还设计了基于1,2-二苯基氨基醇为模板的新型N-甲酰路易斯碱有机小分子催化剂,首次发现结构简单的N-甲酰(1S,2R)二苯基氨基醇能较好的催化N-芳基酮亚胺,最高可以得到82%的对映选择性。 针对我们设计合成的结构新颖、性能优良的催化剂,我们对催化机理进行了探讨和解释,提出了几个假想的机理模型。 Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines, an important intermediate for the synthesis of natural products and chiral drugs. However, asymmetric reduction of imines remains a big challenge and highly enantioselective catalysts with a satisfactorily broad substrate scope remain elusive. Factors contributing to the difficulty of this transformation include the weak reactivity of the C=N bond and the existence of inseparable mixtures of E/Z isomers. Starting from chiral proline, pipecolinic acid, piperazine-2-carboxylic acid and 1,2-diphenyl amino alcohol, a series of structurally simple and easily prepared amides were developed as highly effective Lewis basic organocatalysts for the asymmetric reduction of imines with trichlorosilane as the reducing agent, which promoted the reduction of N-aryl imines with high yields and excellent enantioselectivities with an unprecedented substrate spectrum. In the literature, it has been believed that besides the N-formyl group, the existence of an arylamido group in the structure of Lewis basic organocatalysts is a prerequisite for obtaining high enantioselectivity in the catalytic reduction of imines. However, we found that the N-formyl-L-prolinamides bearing non-arylamido groups, including structurally simple C2-symmetric tetraamides, could also work as effective Lewis basic catalysts to promote the asymmetric reduction of ketimines with high enantioselectivities (up to 86% ee), which are even more enantioselective than the analogues with arylamido groups. In further studies, we developed novel N-formamides with arylamido groups and non-arylmido groups as Lewis basic catalysts using the commercially available L-pipecolinic acid as the template. The catalysts (S)-1-formyl-piperidine-2-carboxylic acid naphthylamide 28 and (2S,1'S,2'S)-acetic acid 2-[(1-formyl-piperidine-2-carbonyl) -amino]-1,2-diphenyl-ethyl ester 30 were found to promote the reduction of a broad range of N-aryl imines in high yields (up to 98%) and excellent ee values (up to 96%) under mild conditions. Furthermore, catalyst 30 also exhibited high enantioselectivities (up to 95% ee) for the challenging aliphatic ketimines and α,β-unsaturated imines despite that these imines exist as E/Z isomeric mixtures. The broad substrate spectrum of this catalyst is unprecedented in catalytic asymmetric imine reduction, including transition-metal-catalyzed hydrogenation processes. Many of the currently available highly enantioselective catalytic systems only tolerate methyl ketimines, which gave poor results for bulkier non-methyl ketimines. Starting from L-piperazine-2-carboxylic acid, we developed (S)-4-(4-tert- butylbenzenesulfonyl)-1-formyl-N-phenyl-piperazine-2-carboxamide as highly enantioselective Lewis basic catalysts for the hydrosilylation of both methyl ketimines and steric bulky non-methyl ketimines. Moreover, higher enantioselectivities were obtained for non-methyl ketimines than methyl ketimines under the catalysis of this catalyst. Thus, this catalyst system complements with 30 in terms of the substrate scope. We also found that easily accessible (1R,2S)-N-formyl-1,2-diphenyl- 2-aminoethanol worked as an effective Lewis basic catalyst in the enantioselective hydrosilylation of ketimines, affording high enantioselectivities (up to 82% ee) for a broad range of ketimines. To rationalize the high efficiencies of the structurally novel catalysts we developed, several catalytic models have been proposed.
Resumo:
本学位论文首先报道了为解决低极性化合物的电喷雾质谱(ESI-MS)分析难题而建立的一种衍生化分析方法;然后从色谱-质谱联用分析、分离纯化和结构鉴定等方面分别报道了几种中藏药材的活性成分研究。论文由下述六章组成: 第一章报道了盐酸羟胺衍生化方法在电喷雾质谱 (ESI-MS) 分析中的应用。该方法利用盐酸羟胺和羰基成肟的快速反应,建立了针对三萜酮等含酮或醛羰基低极性化合物的ESI-MS 信号增强技术。此方法不仅可应用于增强羰基化合物的ESI-MS 质谱信号,还可检测化合物中羰基的个数以及辨别涉及羰基官能团的同分异构体。此外,通过简单的氧化反应,还可将该方法拓展到三萜醇、甾醇等含羟基的低极性化合物,增强它们的ESI-MS 信号。对比已报道的相关ESI-MS 增强质谱信号的衍生化方法,此方法有经济、实用、快速和简便的显著特点。 第二章是关于野生羌活及其栽培品种化学成分的色谱-质谱联用分析。对不同产地野生羌活生长过程中活性成分的动态变化、野生羌活不同形态部位和人工栽培羌活中的活性成分含量进行了HPLC 定量分析。结果表明主要活性成分羌活醇和异欧前胡素都随生长期存在规律性变化,羌活不同形态部位中的活性成分含量也有明显不同。这些实验结果有些较好地印证了传统中医的用药理论,有些也对羌活的传统使用方法提出了新的建议。 第三章介绍了几种传统中藏药材的色谱-质谱联用及串联质谱分析。通过GC-MS 方法,从藏药材长花党参挥发油中共分离鉴定出45 个化合物;利用HPLC方法测定了该藏药材中的主要化学成分——木犀草素的含量(0.7%);利用串联质谱技术,对西番莲和射干中的主要成分进行了快速鉴定,从西番莲中鉴定了4个黄酮碳苷;从不同产地的射干和川射干中鉴定了8 个主要异黄酮成分,其中包括一个未见报道的化合物。 第四章的内容为藏药材石莲叶点地梅的活性成分研究。从植物石莲叶点地梅(Androsace integra (Maxim.) Hand.-Mazz.) 乙醇提取物的正丁醇萃取部分共分离和鉴定了6 个化合物,利用MS 和NMR 等现代波谱学技术阐明了它们的结构:其中包括4 个三萜类化合物:分别是androsacin (1)、 ardisiacrispin A (2) 、saxifragifolin A (3) 和20(29)-lupen-3-one (4);一个神经酰胺:4-羟基-Δ8,9(Z)-鞘氨醇-2'-羟基正二十四碳酸酰胺(5);一个甾体类化合物:胡萝卜苷(6)。化合物1为新的13,28-epoxy-oleanane 型三萜皂苷,在其结构表征的过程中,采用LC-MS 进行糖分析,获得了值得推广的好结果。通过活性筛选发现化合物1~3 对HepG2肝癌细胞表现出不同程度的抑制活性,其中化合物2 活性最好,其IG50 为1.65μg/mL。 第五章是关于一些传统中藏药材的农药活性筛选。利用Syngenta 公司的活性筛选平台对68 种传统中藏药材醇提物进行了抗菌和除草的生物源农药活性筛选。结果表明所筛选的68 种植物提取物中,共有14 种样品表现出明显的除草/杀虫活性,其中水母雪莲花、松萝和茯神木等植物提取物还具有多种生物活性。活性成分还有待进一步追踪分离、纯化和结构鉴定。 第六章为文献综述,概述了羌活药材的研究进展。对羌活属及药用羌活植物从分类学、本草学、品质评价、人工栽培、化学成分及药理作用等方面进行了文献归纳和总结。 In this dissertation, an electrospray ionization mass spectrometry (ESI-MS) signal enhancement method, as well as the work of bioactive components study, HPLC-MS/MS application, bioassay screening, chromatograph separation and structure identification of the metabolites in several medicinal herbs have been reported. First chapter expounded a rapid, simple ESI-MS sensitivity enhancement method for detecting carbonyl groups in natural products has been developed by using hydroxylamine hydrochloride (NH2OH·HCl) as a derivatization reagent. We use the oxime formed during the derivatization reactions and its Beckmann rearrangement intermediates as a means of detecting the carbonyl groups originally present in these triterpenoids. In comparison with other derivatization methods in the literature, this method is simple, specific and can be used to detect carbonyl groups in triterpenoids which have low polarity and are poorly or non-ionizable. Moreover, it can also be used to detect hydroxyl groups by using the Dess-Martin periodinane (DMP) to convert primary and secondary hydroxyls into carbonyl groups. Chapter 2 reported an HPLC-MS method for analyzing the main bioactive compounds in both wild and cultured Notopterygium incisum. The results indicated that the main bioactive compounds varied through different seasons regularly, and in different commercial parts of this herb the content of these compounds also differed from each other. The quantitative analysis results showed that in the traditional commercial parts, the content of main chemical constitutes in Silkworm Notopterygium, Bamboo Notopterygium and Irregular-nodal Notopterygium are higher than that in Striped Notopterygium. This result is tally with the traditionally concept that the quality of Notopterygium, Bamboo Notopterygium and Irregular-nodal Notopterygium are better than that of Striped Notopterygium, which means that the quality of rhizomes is better than main roots. The chemical constituents of cultured N. incisum is reported for the first time in this dissertation and the analysis results showed some growth curves of chemical constituents in this plant, but still left some questions unanswered. Chapter 3 discussed the GC/LC-MS analysis of the traditional Chinese medicines Codonopsis thalictrifolis, Passiflora incarnate, Belamcanda chinensis and Passiflora incarnate. The main constituent, luteolin was isolated and identified from the traditional Tibet medicine of C. thalictrifolis. The quantitative analysis by HPLC has revealed that the content of luteolin in this herb is 0.7%. GC-MS was employed to analyzed chemical constituents of the essential oil from the flower of C. thalictrifolis. More than 60 peaks were detected and 45 of them were identified by comparing their spectra with that of the standards in the database and literatures. ESI-MS/MS was used to analyze the n-butanol extract of Passiflora incarnate. Based on the information of pseudo molecular ions and fragment ions of the glycosides, four major flavone-C-glycosides have been detected and identified as 7-methoxyluteolin-6-C-β-D-glucopyranoside, vitexin, swertisin and orientin. The isoflavone compounds in theextracts of three samples of B. chinensis collected in Gansu, Sichuan and Hunan, and the extract of Iris tectorum collected in Sichuan were analyzed by using TOF-HRMS and IT-MS. From the extracts of these herbs, a new isoflavone, identified as 5’,5,6,7-tetrahydroxy-3’4’-dimethoxyl isoflavon, and 7 known ones have been identified by analyzing the fragmentation patterns and their molecular formulas given by HRMS and the tandem mass spectrometry acquired by IT-MS. Chapter 4 elucidated the isolation and identification of a new triterpene saponin, androsacin (1), along with five known compounds (2-6) were isolated from the whole plants of Androsace integra (Maxim.) Hand.-Mazz., an herb used in traditional Chinese and Tibetan medicine. The chemical structure of the new compound was established as 3β-O-{β-D-glucopyranosyl-(1→4)-O-β-D-xylopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-[O-β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl}-16α-hydroxy-13β,28-epoxy-olean-30-al by analyzing its MS, 1D- and 2D-NMR spectra. Compound 2 was cytotoxic toward HepG2 cancer cell with the GI50 value of 1.65 μg/mL. Chapter 5 described the biogenic pesticide activity screening of 68 traditional Chinese and Tibetan medicine extractions. The intention of this study is to explore bioactive natural compounds from these traditional medicinal herbs for biogenic insecticides use. Based on Syngenta’s bioassay, 14 extractions of these traditional medicines showed pesticide activities, and some of them had multi-activities on antibacterial and insecticidal. Chapter 6 is a review on the chemical and bioactivity research progress of Notopterygium incisum and N. forbesii.
Resumo:
过去十多年,世界手性药物市场需求迅速增长,手性制药工业的发展壮大,已经引起了各国政府、学术界,特别是企业界的高度重视。手性药物中含有大量的手性胺单元,因此研究高效构建手性胺结构单元的方法具有重要的意义和实用价值,而亚胺的不对称还原是合成手性胺最便捷的方法。 手性有机小分子路易斯碱催化三氯氢硅不对称还原亚胺是最近几年才发展起来的一类新的亚胺不对称还原方法。尽管在对映选择性和底物适用范围等方面已经获得了突破性的进展,但是,高性能的路易斯碱催化剂仅局限于N-甲酰氨基酸酰胺一种类型,而且其底物适用范围和催化活性仍不够理想。因此,发展新型催化剂很有必要。 手性硫氧化物作为手性诱导剂的应用已经有数十年的时间,广泛应用在不对称合成及天然产物的全合成中。理论上,硫氧结构单元也可以作为路易斯碱,对硅烷类试剂进行活化,而且硫氧键还有碳氧键难以比拟的先天优势,硫原子自带手性特征,在反应过程中,手性中心离反应位点更近,因此,从手性硫氧化合物出发,极有可能开发出新的高效手性路易斯碱催化剂。最近,Kobayashi和Khiar在亚胺的不对称烯丙基化反应中用手性亚砜活化烯丙基三氯硅烷,获得了较好的ee值,但反应中手性亚砜的用量都需要化学计量以上,因此还不能算做真正意义上的催化剂,进一步的文献调研也未见真正意义上的硫手性有机小分子催化剂。 本文首次成功将硫手性亚磺酰胺衍生物应用于催化三氯氢硅对亚胺的不对称还原,在经过对亚磺酰胺衍生物的多次结构优化,开发出了合成容易,催化活性和立体选择性都很优良,并且有着前所未有的底物普适性的新型手性路易斯碱催化剂。 我们首先尝试将商品化的20mol%叔丁基亚磺酰胺和对甲基亚磺酰胺直接用作催化剂催化三氯氢硅对亚胺的不对称还原,尽管仅获得中等的收率和很低的对映选择性,但证明我们的设计思路是可行的。在此基础上,我们以叔丁基亚磺酰胺为原料和基本骨架,设计合成了一系列的亚磺酰胺类催化剂,通过对催化剂的结构改造,发现当催化剂中存在较强酸性的酚羟基时,催化效果得到大幅提高。随着对催化剂的进一步结构优化,我们找到了一个结构简单,催化效果还不错的催化剂,经过反应条件优化以后,催化反应的收率最高能达到98%,对映选择性最高达93%,并且这个催化剂的底物适应范围比之前报道的催化剂都要广泛。针对酚羟基在催化剂中的重要作用,我们进行了仔细的机理研究后发现,在催化反应中,催化剂极有可能是通过双分子机理去活化三氯氢硅从而实现不对称催化的,而酚羟基的作用就是通过分子间氢键促进双分子催化剂与三氯氢硅的络合。受此启发,我们设计了一系列具有双齿结构的催化剂,通过对双齿催化剂的结构优化,最终筛选出了一个结构更加简单,但催化效果更好的双齿催化剂。10mol%该催化剂催化亚胺还原最高获得95%的收率和96%的ee值。这一结果也进一步验证了我们先前对催化剂机理的推测。 随后,我们还尝试将这些催化剂用于二级胺和芳香酮的直接还原胺化反应中,虽然能获得不错的收率,但对映选择性却很差,我们对反应条件进行了仔细的摸索,仍然没有获得突破。但这些实验为进一步研究二级胺和酮的不对称直接还原胺化反应奠定了良好的基础。 In the past decade, the rapid growth of the global chiral drug market and the significant development of the chiral pharmaceutical industry have attracted a great deal of attention from government, academia and enterprises. Chiral amine is an important structural motif of chiral drugs. Therefore, development of methods for the construction of this motif is of great importance. Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines. The chiral Lewis base organocatalysts promoted asymmetric reduction of imines by HSiCl3 has recently achieved significant advancements. Although big breakthroughs have been made in terms of substrate generality and enantioselectivity, the highly effective catalysts are limited to N-formyl amino acid amides, of which the efficiency and substrate scope remain unsatisfactory. Therefore, development of novel organocatalysts for this transformation is in great demand. Chiral sulfoxides have been well established as efficient and versatile stereocontrollers and have been extensively used in asymmetric synthesis and total synthesis of natural products. The S=O structural motif of sulfoxide could also behave as Lewis base activator for cholorsilane reagents, which, moreover, could be even better than caboxamide considering that the sulfur atom is chiral and thus the chirality center is closer to the reaction center. There exist great potentials that highly effective novel Lewis base organocatalysts could be developed starting from S-chiral sulfoxides. Recently, several S-chiral sulfoxides were reported by Kobayashi and Khiar to be used as Lewis base catalyst to activate allyltrichlorosilanes in asymmetric allylations and good enantioselectivities were obtained. However, these S-chiral sulfoxides were all used at a more than stoichiometric amount and were thus not authentically catalytic. A careful literature survey further revealed that there has been so far no S-chiral organocatalyst available. In this study, we, for the first time, successfully used S-chiral sulfinamides as Lewis base organocatalysts for the asymmetric reduction of ketimines by HSiCl3. After several rounds of structural optimization, we developed the first example of highly effective S-chiral organocatalysts, which promoted the asymmetric reduction of ketimines with trichlorosilane in high yield and excellent enantioselectivity with unprecedented substrate spectrum. In our initial practice, we examined 20mol% of the commercially available (R)-tert-butanesulfinamide and (S)-toluenesulfinamide as the catalyst in the hydrosilylation of ketimine. Although the product was only furnished in moderate yield and low ee, these results demonstrated that our strategy of catalyst design is on the right way. Next, starting from chiral tert-butanesulfinamide, we prepared a series of tert-butanesulfinamide derivatives via simple reductive amination and examined their catalytic efficiencies in the reduction of ketimine. We found that the catalyst bearing a phenolic hydroxyl group exhibited good reactivity and enantioselectivity. On the basis of which, we obtained a structurally simple and highly effective novel organocatalyst, affording the product in 98% yield and 93% ee under optimal reaction conditions. After careful exploration on the role of phenolic hydroxyl group in the catalyst, we speculated that two molecules of the catalyst be involved in the course of reaction, of which the assembly around the silicon center is facilitated by the intermolecular hydrogen bonding through the phenolic hydroxyl groups. Thus, we incorporated two units of sulfonamide into one molecular and prepared a new type of bissulfinamides organocatalysts and examined their catalytic efficiencies in the reduction of ketimine. After optimizing the structure of these catalysts, we finally obtained a novel organocatalyst which has even simpler molecular structure but showed better efficacies, 10mol% of which afforded up to 97% yield and 96% ee under optimal reaction conditions. These results further proved our speculation about the catalytic mechanism. We also examined the newly developed S-chiral organocatalysts in direct asymmetric reductive amination of secondary amines with aromatic ketone. The product was furnished in good yield but in low ee. No better results could be obtained despite our intense opimization efforts. Nevertheless, these experiments laid excellent foundations for eventual success.
Resumo:
Four phytoecdysteroids that have only 19 or 21 carbons, named 11alpha-hydroxyrubrosterone (1), dihydroxyrubrosterone (2), rubrosterone (3) and poststerone (4), were isolated from the whole plant of Cyanotis arachnoidea C.B. Clarke. Among them, 1 was a new compound. Their structures were elucidated by spectroscopic methods.
Resumo:
An extensive literature survey of over 17 Journals was carried out on Chinese sponges and their natural products in the period from 1980 to 2001. This review is thus intended to provide the first thorough overview of research on marine sponges from China Ocean territories. Information is provided about the rather-limited taxonomic study of Chinese marine sponges, with an analysis on their distribution and diversity. Research findings on the natural products and their bioactivity screening from Chinese sponges are summarized. The weaknesses, gaps and problems in the past R&D program of Chinese sponges are identified, which point to the future opportunities in exploiting these huge untapped sponge resources. The report is expected to serve as an entry point for understanding Chinese sponges and for furthering R&D on their bioactive compounds for new drug development. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A facile and convenient synthesis of dihydropyranones has been developed by a formal [4+2] annulation of readily available alpha-acetyl ketene S,S-acetals with various aldehydes, involving a tandem aldol reaction and conjugate addition-elimination reaction, in the presence of NaOH in water.
Resumo:
The binding interactions of 22 flavonoids (9 aglycones and 13 glycosides) with DNA triplexes were investigated using electrospray ionization mass spectrometry (ESI-MS). The results revealed that the hydroxyl positions of aglycones. the locations and numbers of saccharide, as well as the aglycone skeletons play roles in the triplex-binding properties of flavonoids. The presence of 3-OH, or 3'-OH, or replacement of 4'-OH with methoxy group in aglycones decreased the fraction of bound DNA sharply. Flavonoid glycosides exhibit higher binding affinities towards the DNA triplexes than their aglycone counterparts. Glycosylations of flavones at the 8-C position and isoflavones at the 7-O position show higher binding affinities than those on the other positions of ring A of aglycones. Glycosylation with a disaccharide on 0 position of flavonol results in higher binding affinity than that with monosaccharide. Flexibility of the ring B is favorable for its interaction with DNA triplex. According to sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments, glycosylation and non-planarity of flavonoid aglycones lead to different dissociation pathways of the flavonoid/triplex complexes.
Resumo:
Traditional Chinese Medicine (TCM) based on natural products is one important part of the Chinese civilization.Owing to the complexity of the composition,the study on medical effective components and curative effects are very difficult;Fuzi (Radix Aconiti Lateralis Praeparata) has been widely used for cardiotonic and analgesics in China,however,the component-aconitine in which is very toxic and may cause some side-effect.This paper reported the application of electrospray iohization mass spectrometric(ESIMS) technique on study of the compound prescriptions containing fuzi,Renshensini concoction and Baweidihuang concoction,to explore the mechanism of synergy between fuzi and other herbs.From chemical point of view,the detoxification mechanism can be attributed to the hydrolysis of the solubility of toxic diester-alkaloids from concoctions of fuzi.Radix Glycyrrhizae Praeparata,Rhizoma Zingiberis,Radix Ginsengp promote the hydrolysis to produce the less toxic monoester-alkaloids and Fructus Corni reduce the solubility of hypaconitine from fuzi.
Resumo:
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MSn has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.
Cytoglobosins A-G, Cytochalasans from a Marine-Derived Endophytic Fungus, Chaetomium globosum QEN-14
Resumo:
Financial support from the Ministry of Science and Technology of China (2010CB833802 and 2007AA09Z446) and from the National Science Foundation of China (30910103914) is gratefully acknowledged.