965 resultados para Natural language processing (Computer science) -- TFC
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.
Resumo:
This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature.
Resumo:
The present work is focused on studying two issues: the “teamwork” generic competence and the “academic motivation”. Currently the professional profile of engineers has a strong component of teamwork. On the other hand, motivational profile of students determines their tendencies when they come to work in team, as well as their performance at work. In this context we suggest four hypotheses: (H1) students improve their teamwork capacity by specific training and carrying out a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have better attitude towards team working; (H3) students with higher mastery motivation obtain better results in academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with computer science engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception about teamwork competence. Finally, and contrary to the initial hypothesis, these profiles appear to not influence significantly the academic performance of students.
Resumo:
Esta tesis tiene por objeto estudiar las posibilidades de realizar en castellano tareas relativas a la resolución de problemas con sistemas basados en el conocimiento. En los dos primeros capítulos se plantea un análisis de la trayectoria seguida por las técnicas de tratamiento del lenguaje natural, prestando especial interés a los formalismos lógicos para la comprensión del lenguaje. Seguidamente, se plantea una valoración de la situación actual de los sistemas de tratamiento del lenguaje natural. Finalmente, se presenta lo que constituye el núcleo de este trabajo, un sistema llamado Sirena, que permite realizar tareas de adquisición, comprensión, recuperación y explicación de conocimiento en castellano con sistemas basados en el conocimiento. Este sistema contiene un subconjunto del castellano amplio pero simple formalizado con una gramática lógica. El significado del conocimiento se basa en la lógica y ha sido implementado en el lenguaje de programación lógica Prolog II vS. Palabras clave: Programación Lógica, Comprensión del Lenguaje Natural, Resolución de Problemas, Gramáticas Lógicas, Lingüistica Computacional, Inteligencia Artificial.---ABSTRACT---The purpose of this thesis is to study the possibi1 ities of performing in Spanish problem solving tasks with knowledge based systems. Ule study the development of the techniques for natural language processing with a particular interest in the logical formalisms that have been used to understand natural languages. Then, we present an evaluation of the current state of art in the field of natural language processing systems. Finally, we introduce the main contribution of our work, Sirena a system that allows the adquisition, understanding, retrieval and explanation of knowledge in Spanish with knowledge based systems. Sirena can deal with a large, although simple» subset of Spanish. This subset has been formalised by means of a logic grammar and the meaning of knowledge is based on logic. Sirena has been implemented in the programming language Prolog II v2. Keywords: Logic Programming, Understanding Natural Language, Problem Solving, Logic Grammars, Cumputational Linguistic, Artificial Intelligence.
Resumo:
The present work is aimed at discussing several issues related to the teamwork generic competence, motivational profiles and academic performance. In particular, we study the improvement of teamwork attitude, the predominant types of motivation in different contexts and some correlations among these three components of the learning process. The above-mentioned aspects are of great importance. Currently, the professional profile of engineers has a strong teamwork component and the motivational profile of students determines both their tendencies when they come to work as part of a team, as well as their performance at work. Taking these issues into consideration, we suggest four hypotheses: (H1) students improve their teamwork capacity through specific training and carrying out of a set of activities integrated into an active learning process; (H2) students with higher mastery motivation have a better attitude towards teamwork; (H3) students with different types of motivations reach different levels of academic performance; and (H4) students show different motivation profiles in different circumstances: type of courses, teaching methodologies, different times of the learning process. This study was carried out with Computer Science Engineering students from two Spanish universities. The first results point to an improvement in teamwork competence of students if they have previously received specific training in facets of that competence. Other results indicate that there is a correlation between the motivational profiles of students and their perception of teamwork competence. Finally, results point to a clear relationship between some kind of motivation and academic performance. In particular, four kinds of motivation are analyzed and students are classified into two groups according to them. After analyzing several marks obtained in compulsory courses, we perceive that those students that show higher motivation for avoiding failure obtain, in general, worse academic performance.
Resumo:
Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.
Resumo:
An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.
Resumo:
The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.
Resumo:
Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
Computer science studies possess a strong multidisciplinary aptitude since most graduates do their professional work outside of a computing environment, in close collaboration with professionals from many different areas. However, the training offered in computer science studies lacks that multidisciplinary factor, focusing more on purely technical aspects. In this paper we present a novel experience where computer studies and educational psychology find a common ground and realistic working through laboratory practices. Specifically, the work enables students of computer science education the development of diagnosis support systems, with artificial intelligence techniques, which could then be used for future educational psychologists. The applications developed by computer science students are the creation of a model for the diagnosis of pervasive developmental disorders (PDD), sometimes also commonly called the autism spectrum disorders (ASD). The complexity of this diagnosis, not only by the exclusive characteristics of every person who suffers from it, but also by the large numbers of variables involved in it, requires very strong and close interdisciplinary participation. This work demonstrates that it is possible to intervene in a curricular perspective, in the university, to promote the development of interpersonal skills. What can be shown, in this way, is a methodology for interdisciplinary practices design and a guide for monitoring and evaluation. The results are very encouraging since we obtained significant differences in academic achievement between students who attended a course using the new methodology and those who did not use it.
Resumo:
Recent years have witnessed a surge of interest in computational methods for affect, ranging from opinion mining, to subjectivity detection, to sentiment and emotion analysis. This article presents a brief overview of the latest trends in the field and describes the manner in which the articles contained in the special issue contribute to the advancement of the area. Finally, we comment on the current challenges and envisaged developments of the subjectivity and sentiment analysis fields, as well as their application to other Natural Language Processing tasks and related domains.
Resumo:
Hospitals attached to the Spanish Ministry of Health are currently using the International Classification of Diseases 9 Clinical Modification (ICD9-CM) to classify health discharge records. Nowadays, this work is manually done by experts. This paper tackles the automatic classification of real Discharge Records in Spanish following the ICD9-CM standard. The challenge is that the Discharge Records are written in spontaneous language. We explore several machine learning techniques to deal with the classification problem. Random Forest resulted in the most competitive one, achieving an F-measure of 0.876.
imaxin|software: PLN aplicada a la mejora de la comunicación multilingüe de empresas e instituciones
Resumo:
imaxin|software es una empresa creada en 1997 por cuatro titulados en ingeniería informática cuyo objetivo ha sido el de desarrollar videojuegos multimedia educativos y procesamiento del lenguaje natural multilingüe. 17 años más tarde, hemos desarrollado recursos, herramientas y aplicaciones multilingües de referencia para diferentes lenguas: Portugués (Galicia, Portugal, Brasil, etc.), Español (España, Argentina, México, etc.), Inglés, Catalán y Francés. En este artículo haremos una descripción de aquellos principales hitos en relación a la incorporación de estas tecnologías PLN al sector industrial e institucional.