372 resultados para NONORIENTABLE MANIFOLDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

How the visual system extracts shape information from a single grey-level image can be approached by examining how the information about shape is contained in the image. This technical report considers the characteristic equations derived by Horn as a dynamical system. Certain image critical points generate dynamical system critical points. The stable and unstable manifolds of these critical points correspond to convex and concave solution surfaces, giving more general existence and uniqueness results. A new kind of highly parallel, robust shape from shading algorithm is suggested on neighborhoods of these critical points. The information at bounding contours in the image is also analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present two algorithms for computing distances along a non-convex polyhedral surface. The first algorithm computes exact minimal-geodesic distances and the second algorithm combines these distances to compute exact shortest-path distances along the surface. Both algorithms have been extended to compute the exact minimalgeodesic paths and shortest paths. These algorithms have been implemented and validated on surfaces for which the correct solutions are known, in order to verify the accuracy and to measure the run-time performance, which is cubic or less for each algorithm. The exact-distance computations carried out by these algorithms are feasible for large-scale surfaces containing tens of thousands of vertices, and are a necessary component of near-isometric surface flattening methods that accurately transform curved manifolds into flat representations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, two methods for constructing systems of ordinary differential equations realizing any fixed finite set of equilibria in any fixed finite dimension are introduced; no spurious equilibria are possible for either method. By using the first method, one can construct a system with the fewest number of equilibria, given a fixed set of attractors. Using a strict Lyapunov function for each of these differential equations, a large class of systems with the same set of equilibria is constructed. A method of fitting these nonlinear systems to trajectories is proposed. In addition, a general method which will produce an arbitrary number of periodic orbits of shapes of arbitrary complexity is also discussed. A more general second method is given to construct a differential equation which converges to a fixed given finite set of equilibria. This technique is much more general in that it allows this set of equilibria to have any of a large class of indices which are consistent with the Morse Inequalities. It is clear that this class is not universal, because there is a large class of additional vector fields with convergent dynamics which cannot be constructed by the above method. The easiest way to see this is to enumerate the set of Morse indices which can be obtained by the above method and compare this class with the class of Morse indices of arbitrary differential equations with convergent dynamics. The former set of indices are a proper subclass of the latter, therefore, the above construction cannot be universal. In general, it is a difficult open problem to construct a specific example of a differential equation with a given fixed set of equilibria, permissible Morse indices, and permissible connections between stable and unstable manifolds. A strict Lyapunov function is given for this second case as well. This strict Lyapunov function as above enables construction of a large class of examples consistent with these more complicated dynamics and indices. The determination of all the basins of attraction in the general case for these systems is also difficult and open.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The planar design of solid oxide fuel cell (SOFC) is the most promising one due to its easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino silicate based glasses and GCs, are becoming the most promising materials for gas-tight sealing applications in SOFCs. Besides the development of new glass-based materials, new additional concepts are required to overcome the challenges being faced by the currently existing sealant technology. The present work deals with the development of glasses- and GCs-based materials to be used as a sealants for SOFCs and other electrochemical functional applications. In this pursuit, various glasses and GCs in the field of diopside crystalline materials have been synthesized and characterized by a wide array of techniques. All the glasses were prepared by melt-quenching technique while GCs were produced by sintering of glass powder compacts at the temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd, Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant GCs has been investigated, in relevance with final application as sealants in SOFC. From the results obtained in the study of diopside-based glasses, a bilayered concept of GC sealant is proposed to overcome the challenges being faced by (SOFCs). The systems designated as Gd−0.3 (in mol%: 20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3) and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize the bi-layer concept. Both GCs exhibit similar thermal properties, while differing in their amorphous fractions, revealed excellent thermal stability along a period of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU) and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC components and GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were prepared and deposited onto interconnect materials using a tape casting approach. The bi-layered GC showed good wetting and bonding ability to Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6 K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the SOFC componets. All these features confirm the good suitability of the investigated bi-layered sealant system for SOFC applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.