924 resultados para NF-kappa B
Resumo:
Amlodipine, an antihypertensive drug, and diclofenac, an anti inflammatory drug, may generally be combined, particularly in elderly patients; therefore, the potential for their interaction is high. We aim to determine if amlodipine interferes with the antimigratory effect of diclofenac. For this, male spontaneously hypertensive rats (SHRs) were treated with either diclofenac (1 mg.kg(-1).d(-1), 15 d) alone or combined with amlodipine (10 mg.kg(-1).d(-1), 15 d). Leukocyte rolling, adherence, and migration were studied by intravital microscopy. Diclofenac did not change (180.0 +/- 2.3), whereas amlodipine combined (163.4 +/- 5.1) or not (156.3 +/- 4.3) with diclofienac reduced the blood pressure (BP) levels in SHR (183.1 +/- 4.4). Diclofenac and amlodipine reduced leukocyte adherence, migration, and ICAM-I expression, whereas only diclofenac reduced rolling leukocytes as well. Combined with amlodipine, the effect of the diclofenac was reduced. Neither treatment tested increased the venular shear rate or modified the venular diameters, number of circulating leukocytes, P-selectin, PECAM-1, L-selectin, or CD-18 expressions. No difference could be found in plasma concentrations of both drugs given alone or in association. In conclusion, amlodipine reduces leukocyte migration in SHR, reducing endothelial cell ICAM-1 expression. Amlodipine reduces the effect of the diclofenac, possibly by the same mechanism. A pharmacokinetic interaction as well as an effect on the other adhesion molecules tested could be discarded.
Resumo:
This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.
Resumo:
The signalling pathway CD40/CD40L (CD40 ligand) plays an important role in atherosclerotic plaque formation and rupture. AngII (angiotensin II), which induces oxidative stress and inflammation, is also implicated in the progression of atherosclerosis. In the present study, we tested the hypothesis that AngII increases CD40/CD40L activity in vascular cells and that ROS (reactive oxygen species) are part of the signalling cascade that controls CD40/CD40L expression. Human CASMCs (coronary artery smooth muscle cells) in culture exposed to IL (interleukin)-1 beta or TNF-alpha (tumour necrosis factor-a) had increased superoxide generation and enhanced CD40 expression, detected by EPR (electron paramagnetic resonance) and immunoblotting respectively. Both phenomena were abolished by previous incubation with membrane-permeant antioxidants or cell transfection with P22(phox) antisense. AngII (50-200 nmol/l) induced an early and sustained increase in CD40 mRNA and protein expression in CASMCs, which was blocked by treatment with antioxidants. Increased CD40 expression led to enhanced activity of the pathway, as AngII-treated cells stimulated with recombinant CD40L released higher amounts of IL-8 and had increased COX-2 (cyclo-oxygenase-2) expression. We conclude that AngII stimulation of vascular cells leads to a ROS-dependent increase in CD40/CD40L signalling pathway activity. This phenomenon may be an important mechanism modulating the arterial injury observed in atherosclerosis-related vasculopathy.
Resumo:
Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of capase-3, and increasing cell death. The over-expressaion of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. lit cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitiosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.
Resumo:
Various significant anti-HCV and cytotoxic sesquiterpene lactones (SLs) have been characterized. In this work, the chemometric tool Principal Component Analysis (PCA) was applied to two sets of SLs and the variance of the biological activity was explored. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. The calculations were performed using VolSurf program. For anti-HCV activity, PC1 (First Principal Component) explained 30.3% and PC2 (Second Principal Component) explained 26.5% of matrix total variance, while for cytotoxic activity, PC1 explained 30.9% and PC2 explained 15.6% of the total variance. The formalism employed generated good exploratory and predictive results and we identified some structural features, for both sets, important to the suitable biological activity and pharmacokinetic profile.
Resumo:
O transplante de ilhotas humanas, utilizado como reposição das células produtoras de insulina em pacientes portadores de diabetes mellitus tipo 1, está se tornando uma importante prática clínica. Entretanto, eventos inflamatórios não específicos presente nas ilhotas, são responsáveis pela vulnerabilidade das mesmas, e contribuem à diminuição do número celular durante o processo de isolamento e posterior transplante. CD40 é um membro da família do receptor de necrose tumoral, descrito em uma variedade de células. Em condições fisiológicas, o CD40 presente nas células apresentadoras de antígenos participa como molécula co-estimulatória na ativação dos linfócitos T. Porém, o CD40 também foi descrito em condições patológicas, como psoríase, aterosclerose e fibrose cística, onde sua expressão está envolvida em eventos crônicos inflamatórios. É interessante ressaltar que, o CD40 também tem sido descrito em neurônios, células que apresentam uma variedade de moléculas similares às expressas nas células M pancreáticas. Em vista desses achados, tentou-se determinar se a células M também poderiam expressar o receptor de CD40, e se presente, determinar possíveis conseqüências próinflamatórias após a sua ativação. Utilizaram-se diversas técnicas como RT-PCR, western blot, citometria de fluxo, imuno-histoquímica assim como imunofluorescência, para detectar a expressão de CD40 em ilhotas de camundongo, macaco e humano, e também na linhagem de células M NIT-1. Determinaram-se as vias de transdução de sinais de CD40 por western blot e ensaios com gene repórter. Foi determinada por tecnologia luminex, a secreção de citocinas e quimiocinas dependente de CD40 em ilhotas humanas, estimuladascom a proteína recombinante CD40L e em alguns casos confirmada por RT-PCR e imunofluorescência. Os resultados demonstram a expressão de CD40 nas células M, que pode ser aumentada pela ação de citocinas pró-inflamatórias, cuja ativação induz a secreção de mais citocinas e quimiocinas (IL-6, IL-8, MCP-1 e MIP-1M) dependentes das vias de transdução de sinais Raf/MEK/ERK e NF-VB. A interação CD40-CD40L aumentou a expressão de ICAM-1 e a induziu morte celular nas células M pancreáticas. Nesse sentido, a ativação de CD40 induz a secreção de mediadores solúveis próinflamatórios que podem comprometer a viabilidade das células M. O cenário próinflamatório sustentando pela ação de CD40 sugere que o mesmo poderia ter um papel ativo orquestrando um processo inflamatório
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Background: the effect of triclosan plus the cationic detergent cetylpyridinium chloride (CPC) was evaluated for prostaglandin inhibition in human gingival fibroblasts. Since triclosan has previously been shown to inhibit proinflammatory cytokine induced prostaglandin E-2 (PGE(2)) production, we wanted to determine if triclosan, in the presence of CPC, could enhance these effects.Methods: Initial studies determined that both triclosan and CPC were cytotoxic to human gingival fibroblasts in concentrations exceeding 1.0 mu g/ml for either agent longer than 24 hours in a tissue culture. Therefore, subsequent studies measuring prostaglandin biosynthesis and cyclooxygenase (COX)-1 and COX-2 mRNA expression were performed in concentrations and times that did not significantly affect cell viability.Results: PGE2 biosynthesis was dose dependently inhibited by both triclosan and triclosan and CPC when challenged by tumor necrosis factor (TNF)-alpha or interleukin (IL)-1 beta. At pharmacologically relevant concentrations, triclosan and CPC inhibited ILAP-induced PGE(2) production to a greater extent than triclosan alone (P = 0.02). Moreover, enhanced COX-2 mRNA repression was observed with triclosan and CPC in comparison to triclosan alone in IL-1 beta and TNF-alpha stimulated cells. No effect on COX-I gene expression was observed. Further analysis of cell signaling mechanisms of triclosan and CPC indicates that nuclear factor-kappa B (NF-kappa B) and not p38 mitogen-activated protein kinase (MAPK) signaling may be impaired in the presence of triclosan and CPC.Conclusion: This study indicates that triclosan and CPC are more effective at inhibiting PGE(2) at the level of COX-2 gene regulation, and this combination may offer a potentially better anti -inflammatory agent in the treatment of inflammatory lesions in the oral cavity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)