903 resultados para Myelin Proteins
Resumo:
Circular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability. In one remarkable family of circular proteins, the cyclotides, the cyclic backbone is additionally braced by a knotted arrangement of disulfide bonds that confers additional stability and topological complexity upon the family. This article describes the discovery, structure, function and biosynthesis of the currently known circular proteins. The discovery of naturally occurring circular proteins in the past few years has been complemented by new chemical and biochemical methods to make synthetic circular proteins; these are also briefly described.
Resumo:
SOX transcription factors perform a remarkable variety of important roles in vertebrate development, either activating or repressing specific target genes through interaction with different partner proteins. Surprisingly, these interactions are often mediated by the conserved, DNA-binding HMG domain, raising questions as to how each factor's specificity is generated. We propose a model whereby non-HMG domains may influence partner protein selection and/or binding stability.
Resumo:
Motivation: A major issue in cell biology today is how distinct intracellular regions of the cell, like the Golgi Apparatus, maintain their unique composition of proteins and lipids. The cell differentially separates Golgi resident proteins from proteins that move through the organelle to other subcellular destinations. We set out to determine if we could distinguish these two types of transmembrane proteins using computational approaches. Results: A new method has been developed to predict Golgi membrane proteins based on their transmembrane domains. To establish the prediction procedure, we took the hydrophobicity values and frequencies of different residues within the transmembrane domains into consideration. A simple linear discriminant function was developed with a small number of parameters derived from a dataset of Type II transmembrane proteins of known localization. This can discriminate between proteins destined for Golgi apparatus or other locations (post-Golgi) with a success rate of 89.3% or 85.2%, respectively on our redundancy-reduced data sets.
Resumo:
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.
Resumo:
Ras signalling has classically been thought to occur exclusively at the inner surface of a relatively uniform plasma membrane. Recent studies have shown that Ras proteins interact dynamically with specific microdomains of the plasma membrane as well as with other internal cell membranes. These different membrane microenvironments modulate Ras signal output and highlight the complex interplay between Ras location and function.
Resumo:
Localization of signaling complexes to specific micro-domains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent micro-domain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.
Resumo:
Background and Objectives: Selection of suitable treatment for early gastric cancers, such as endoscopic mucosal resection or the major surgical option of resection of the cancer together with a radical lymph node dissection, may be assisted by comparing the growth characteristics of the cancer with selected molecular characteristics. The results could be used to predict those cases that have a higher risk of developing secondary metastases. Methods: A total of 1,196 Japanese patients with early gastric cancers (648 mucosal cancers and 548 submucosal) were included in the selection of two groups: a metastatic group made up 57 cancers with lymph node metastasis (9 mucosal, 48 submucosal), and a nonmetastatic group of 61 cases (6 mucosal, 55 submucosal) without lymph node metastasis. Growth characteristics of the cancers (superficially spreading, penetrating or invasive, lymph node metastasis) were compared with immunohistochemical expression of single-stranded DNA (ssDNA) protein (apoptosis indicator), bcl-2 and p53 (apoptosis-associated), Ki-67 (cell proliferation), and E-cadherin (cell adhesion) proteins. Results: The lesions in the nonmetastatic group had higher levels of apoptosis and lower expression of bcl-2 than in the metastatic group, indicating an inhibitory role for apoptosis in malignant progression. Apoptosis was also higher in the superficial compared with the invasive lesions of both groups. The lesions in the metastatic group had higher p53 expression than that of the nonmetastatic group, whereas apoptosis in the metastatic group was lower than in the nonmetastatic group. An unproved explanation for this finding may be that, although increased, p53 was mutated and ineffective in promoting apoptotic control of metastatic progression. E-cadherin was decreased in the invasive lesions of both groups, indicating a greater ability of these cells to lose adhesion, to invade the submucosa, and to metastasize. Cell proliferation was highest in the superficial lesions of both metastatic and nonmetastatic groups. Conclusions: Early gastric cancers with low levels of apoptosis, increased bcl-2, and high levels of p53 expression are more likely to invade and metastasize. (C) 2003 Wiley-Liss, Inc.
Resumo:
The Crim1 gene is predicted to encode a transmembrane protein containing six von Willebrand-like cysteine-rich repeats (CRRs) similar to those in the BMP-binding antagonist Chordin (Chrd). In this study, we verify that CRIM1 is a glycosylated, Type I transmembrane protein and demonstrate that the extracellular CRR-containing domain can also be secreted, presumably via processing at the membrane. We have previously demonstrated Crim1 expression at sites consistent with an interaction with bone morphogenetic proteins (BMPs). Here we show that CRIM1 can interact with both BMP4 and BMP7 via the CRR-containing portion of the protein and in so doing acts as an antagonist in three ways. CRIM1 binding of BMP4 and -7 occurs when these proteins are co-expressed within the Golgi compartment of the cell and leads to (i) a reduction in the production and processing of preprotein to mature BMP, (ii) tethering of pre-BMP to the cell surface, and (iii) an effective reduction in the secretion of mature BMP. Functional antagonism was verified by examining the effect of coexpression of CRIM1 and BMP4 on metanephric explant culture. The presence of CRIM1 reduced the effective BMP4 concentration of the media, thereby acting as a BMP4 antagonist. Hence, CRIM1 modulates BMP activity by affecting its processing and delivery to the cell surface
Resumo:
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.