968 resultados para Multiphoton microscopy
Resumo:
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.
Resumo:
This work provides a methodology for synthesizing isolated multi-component, high entropy alloy nanoparticles. Wet chemical synthesis technique was used to synthesis NiFeCrCuCo nanoparticles. As synthesized nanoparticles were spherical with an average size of 26.7 +/- 3.3 nm. Average composition of the as-synthesized nanoparticle dispersion was 26 +/- 2 at% Cr, 14 +/- 2 at% Fe, 10 +/- 0.6 at% Co, 25 +/- 0.1 at% Ni and 25 +/- 1.1 at% Cu. Compositional analysis of the nanoparticles conducted using the compositional line profile analysis and compositional mapping on a single nanoparticle level revealed a fairly uniform distribution of all the five component elements within the nanoparticle volume. Electron diffraction analysis clearly revealed that the structure of as-synthesized nanoparticles was face centered cubic. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 +/- 5 N/m, and the elastic modulus is 3.4 +/- 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of `rough eye' surface. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photo-bleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy. (C) 2015 AIP Publishing LLC.
Resumo:
In order to enhance the piezoelectric b-phase, PVDF was electrospun from DMF solution. The enhanced b-phase was discerned by comparing the electrospun fibers against the melt mixed samples. While both the processes resulted in phase transformation of a-to electroactive b-polymorph in PVDF, the fraction of b-phase was strongly dependent on the adopted process. Two different nanoscopic particles: carboxyl functionalized multiwall carbon nanotubes (CNTs) and silver (Ag) decorated CNTs were used to further enhance the piezoelectric coefficient in the electrospun fibers. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) supports the development of piezoelectric b-phase in PVDF. It was concluded that electrospinning was the best technique for inducing the b-polymorph in PVDF. This was attributed to the high voltage electrostatic field that generates extensional forces on the polymer chains that aligns the dipoles in one direction. The ferroelectric and piezoelectric measurement on electrospun fibers were studied using piezo-response force microscope (PFM). The Ag-CNTs filled PVDF electrospun fibers showed the highest piezoelectric coefficient (d(33) = 54 pm V-1) in contrast to PVDF/CNT fibers (35 pm V-1) and neat PVDF (30 pm V-1). This study demonstrates that the piezoelectric coefficient can be enhanced significantly by electrospinning PVDF containing Ag decorated nanoparticles.
Resumo:
We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells. (C) 2016 Author(s).
Resumo:
In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per mu l) obtained from our instrument, with that of a commercially available hematology analyzer.
Resumo:
We have used scanning gate microscopy to explore the local conductivity of a current-annealed graphene flake. A map of the local neutrality point (NP) after annealing at low current density exhibits micron-sized inhomogeneities. Broadening of the local e-h transition is also correlated with the inhomogeneity of the NP. Annealing at higher current density reduces the NP inhomogeneity, but we still observe some asymmetry in the e-h conduction. We attribute this to a hole-doped domain close to one of the metal contacts combined with underlying striations in the local NP. © 2010 American Institute of Physics.
Resumo:
The molecular ordering of coronene (C24H12) obtained by vacuum-deposition onto predominantly Ag(111) on mica has been investigated using the scanning tunnelling microscope. Real-space topographic images reveal that in certain regions we obtain layer-by-layer ordered growth of the molecules on this substrate which agrees with previous indirect measurements (the growth did not display this ordering in other regions). In our experiments on the ordered regions, we observe the best imaging contrast at a voltage bias of -0.28 V which may correspond to a resonant tunnelling process through the molecules. © 1995.
Resumo:
The adsorption and competitive adsorption of collagen and bovine serum albumin (BSA) were directly visualized and quantified using atomic force microscopy (AFM) and imaging ellipsometry. Chemically modified silicon surfaces were used as hydrophilic and hydrophobic substrates. The results showed that collagen and BSA in single component solution adsorbed onto a hydrophobic surface two times more than that onto a hydrophilic surface. The competitive adsorption between collagen and BSA showed that serum albumin preferentially adsorbed onto a hydrophobic surface, while collagen on a hydrophilic surface. In the binary solution of BSA (1 mg/ml BSA) and collagen (0.1 mg/ml), nearly 100% of the protein adsorbed onto the hydrophobic surface was BSA, but on the hydrophilic surface only about 6% was BSA. Surface affinity was the main factor controlling the competitive adsorption.
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.