929 resultados para Mode of Operation
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Exceptionally abundant specimens of Conularia aff. desiderata Hall occur in multiple marine obrution deposits, in a single sixth-order parasequence composed of argillaceous and silty very fine sandstone, in the Otsego Member of the Mount Marion Formation (Middle Devonian, Givetian) in eastern New York State, USA. Associated fossils consist mostly of rhynchonelliform brachiopods but also include bivalve molluscs, orthoconic nautiloids, linguliform brachiopods and gastropods. Many of the brachiopods, bivalve molluscs and conulariids have been buried in situ. Conulariids buried in situ are oriented with their aperture facing obliquely upward and with their long axis inclined at up to 87degree to bedding. Most specimens are solitary, but some occur in V-like pairs or in radial clusters consisting of three specimens, with the component specimens being about equally long or (less frequently) substantially different in length. The compacted apical end of Conularia buried in situ generally rests upon argillaceous sandstone. With one possible exception, none of the examined specimens terminates in a schott (apical wall), and internal schotts appear to be absent. The apical ends of specimens in V-like pairs and radial clusters show no direct evidence of interconnection of their periderms. The apical, middle or apertural region of some inclined specimens abuts or is in close lateral proximity to a recumbent conulariid or to one or more spiriferid brachiopods, some of which have been buried in their original life orientation. The azimuthal bearings of Conularia and nautiloid long axes and the directions in which conulariids open are nonrandom, with conulariids being preferentially aligned between 350 and 50degree and with their apertural end facing north-east, and nautiloids being preferentially aligned between 30 and 70degree. Otsego Member Conularia were erect or semi-erect, epifaunal or partially infaunal animals, the apical end of which rested upon very fine bottom sediment. The origin of V-like pairs and radial clusters remains enigmatic, but it is probable that production of schotts was not a regular feature of this animal's life history. Finally, conulariids and associated fauna were occasionally smothered by distal storm deposits, under the influence of relatively weak bottom currents. © The Palaeontological Association.
Resumo:
The wrist and hand region has been the most commonly used for estimating age and osseous development due to the great number of ossification centers. The aim was to determine which method, Tanner & Whitehouse's (TW3), Greulich & Pyle's (GP) or Eklof & Ringertz's, more closely relates to the chronological age in subjects with Down syndrome with chronological ages between 61 and 180 months, using wrist and hand radiographs. The sample consisted of 85 radiographs, 52 of males and 33 of females. Eklof & Ringertz's method was computerized (Radiomemory). Greulich & Pyle's atlas was used and compared with the wrist and hand radiographs. For the TW3 method, 13 ossification centers were evaluated; for each one of them, there are seven or eight development stages to which scores are assigned; these scores are then added and the results are transformed into osseous age values. No statistically significant differences were observed between the male and female genders for methods TW3 and GP, contrasting with the observed differences for the Eklof & Ringertz method. Correlation (r2) between osseous and chronological ages was 0.8262 for TW3 and 0.7965 for GP, while for the method of Eklof & Ringertz, it was 0.7656 for females and 0.8353 for males. The author concluded that the osseous age assessment method that better related to the chronological age was the TW3, followed by Greulich & Pyle's and Eklof & Ringertz's.
Resumo:
Purpose: Adhesive cementation is an important step for restorations made of feldspathic ceramic as it increases the strength of such materials. Incorrect selection of the adhesive resin and the resin cement to adhere to the ceramic surface and their durability against aging can affect the adhesion between these materials and the clinical performance. This study evaluated the effect of adhesive resins with different pHs, resin cements with different polymerization modes, and aging on the bond strength to feldspathic ceramic. Materials and Methods: One surface of feldspathic ceramic blocks (VM7) (N = 90) (6.4 × 6.4 × 4.8 mm3) was conditioned with 10% hydrofluoric acid for 20 seconds, washed/dried, and silanized. Three adhesive resins (Scotchbond Multi-Purpose Plus [SBMP], pH: 5.6; Single Bond [SB], pH: 3.4; and Prime&Bond NT [NT], pH: 1.7) were applied on the ceramic surfaces (n = 30 per adhesive). For each adhesive group, three resin cements with different polymerization modes were applied (n = 10 per cement): photo-polymerized (Variolink II base), dual polymerized (Variolink II base + catalyst), and chemically polymerized (C&B). The bonded ceramic blocks were stored in water (37°C) for 24 hours and sectioned to produce beam specimens (cross-sectional bonded area: 1 ± 0.1 mm2). The beams of each block were randomly divided into two conditions: Dry, microtensile test immediately after cutting; TC, test was performed after thermocycling (12,000×, 5°C to 55°C) and water storage at 37°C for 150 days. Considering the three factors of the study (adhesive [3 levels], resin cement [3 levels], aging [2 levels]), 18 groups were studied. The microtensile bond strength data were analyzed using 3-way ANOVA and Tukey's post hoc test (α= 0.05). Results: Adhesive resin type (p < 0.001) and the resin cement affected the mean bond strength (p= 0.0003) (3-way ANOVA). The NT adhesive associated with the chemically polymerized resin cement in both dry (8.8 ± 6.8 MPa) and aged conditions (6.9 ± 5.9 MPa) presented statistically lower bond strength results, while the SBMP adhesive resin, regardless of the resin cement type, presented the highest results (15.4 to 18.5 and 14.3 to 18.9 MPa) in both dry and aged conditions, respectively (Tukey's test). Conclusion: Application of a low-pH adhesive resin onto a hydrofluoric acid etched and silanized feldspathic ceramic surface in combination with chemically polymerized resin cement did not deliver favorable results. The use of adhesive resin with high pH could be clinically advised for the photo-, dual-, and chemically polymerized resin cements tested. © 2012 by the American College of Prosthodontists.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.
Resumo:
Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-β-1,4-glucosidase and exo-β-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications. © 2013 Elsevier Ltd.
Resumo:
Designación del proyecto: ampliación y mejoramiento de los servicios hidrometeorologicos en el Istmo Centroamericano
Resumo:
Dispute settlement mechanisms help to create a fairly predictable and accurate environment in which economic agents can pursue their activities in the international arena. The World Trade Organization (WTO) Dispute Settlement Body (DSB) has now been in operation for 10 years and it is fitting, at this point to assess the progress achieved by Latin America and the Caribbean, the region that made most use of this mechanism during the period, and whose countries have made significant gains against protectionism in key export sectors. These successes constitute important precedents which will influence upcoming multilateral negotiations and future trade disputes.This article reviews the work carried out by the DSB, the role of the leading stakeholders in the system (the United States and the European Union) and progress made by countries of the region in a global context marked by the complexity of trade issues and the legal framework that regulates them. The findings presented in this article are based on the study "Una década de funcionamiento del Sistema de Solución de Diferencias de la OMC: avances y desafíos".
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Influence of abutment-to-fixture design on reliability and failure mode of all-ceramic crown systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion