925 resultados para Metallic substrate
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for a ntiviral intervention but also a key player i n the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TCPTP). T he aim of this study was to identify novel cellular substrates o f the N S3-4A protease and to investigate their role in the replication and pathogenesis of HCV. Methods: Cell lines inducibly expressing t he NS3-4A protease were analyzed in basal as well as interferon-α-stimulated states by stable isotopic l abeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling stringent criteria for potential substrates or products of the NS3-4A protease were further i nvestigated in different experimental systems as well a s in liver biopsies from patients with chronic hepatitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 18 candidates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a n ovel cellular substrate of the H CV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a p roviral factor involved in viral particle production but not in HCV entry or HCV RNA replication. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of GPx8 cleavage for protein function are underway. The identification of novel cellular substrates o f the HCV N S3-4A protease should yield new insights i nto the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel targets for antiviral intervention.
Resumo:
A fluorescent oligopeptide substrate for the promastigote surface protease (PSP) of Leishmania was designed using the data reported for the substrate specificity of the enzyme (Bouvier, J., Schneider, P., Etges, R. J., and Bordier, C. 1990. Biochemistry 29, 10113-10119). The indole fluorescence of the tryptophan residue was efficiently quenched through resonance energy transfer by an N-terminal dansyl group located five amino acid residues away. The heptapeptide, dansyl-A-Y-L-K-K-W-V-NH2, was cleaved by PSP between the tyrosine and leucine residues with a kcat/Km ratio of 8.8 x 10(6) M-1sec-1. Hydrolysis by the enzyme results in a time-dependent increase of fluorescence intensity of 3.7-fold. Assays can be designed based on the tryptophan fluorescence at 360 nm or by individual product analyses using thin-layer chromatography. The synthetic substrate is readily cleaved by the metalloprotease at the surface of fixed promastigotes. The specificity and sensitivity of such internally quenched fluorescent peptide substrate will facilitate the identification of novel inhibitors for the enzyme and aid in detailed studies on its enzymology.
Resumo:
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. Conclusion: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease. (Hepatology 2014;59:423-433).
Resumo:
Structural and optical characterization of copper phthalocyanine thin film thermally deposited at different substrate temperatures was the aim of this work. The morphology of the films shows strong dependence on temperature, as can be observed by atomic force microscopy and x-ray diffraction spectroscopy, specifically in the grain size and features of the grains. The increase in the crystal phase with substrate temperature is shown by x-ray diffractometry. Optical absorption coefficient measured by photothermal deflection spectroscopy and optical transmittance reveal a weak dependence on the substrate temperature. Besides, the electro-optical response measured by the external quantum efficiency of Schottky ITO/CuPc/Al diodes shows an optimized response for samples deposited at a substrate temperature of 60 °C, in correspondence to the I-V diode characteristics.
Resumo:
PURPOSE: To evaluate the feasibility, efficacy, and tolerance of self-expanding metallic stent insertion under fluoroscopic guidance for palliation of symptoms related to malignant gastroduodenal obstruction. MATERIALS AND METHODS: Seventy-two patients (38 men, 34 women) aged 25-98 years (mean, 62 years) with duodenal (n = 43), antropyloric (n = 13), surgical gastrojejunostomy (n = 10), or pyloroduodenal (n = 6) malignant obstruction were referred for insertion of self-expanding metallic stents over a 6-year period. Stent insertion was performed with use of a peroral or transgastric approach when necessary (n = 11). RESULTS: Stents were successfully inserted in 70 of the 72 patients (97%) and provided symptom relief in 65 patients (90%). Inserted stents were mainly uncovered vascular (n = 55) or enteral (n = 10) Wallstents. One hundred eight stents were initially inserted: one, two, three, or four stents were indicated in 43, 17, nine, and one patient, respectively. Mean follow-up was 119 days (range, 4-513 days). Mean stent patency was 113 days (range, 4-513 days). Mean survival of patients was 120 days. During follow-up, stent obstruction occurred in seven patients as a result of tumoral overgrowth (n = 5) or ingrowth (n = 2). Complications occurred in 12 of the 72 patients (17%), including stent migration (n = 8), stent fracture (n = 1), duodenal perforation (n = 1), and death related to general anesthesia (n = 1). CONCLUSION: Despite a significant complication rate, self-expanding metallic stent insertion under fluoroscopic guidance appears to be a feasible and useful technique in the palliative management of malignant gastroduodenal obstruction.
Resumo:
Purpose: To assess the feasibility of a method based on microwave spectrometry to detect structural distortions of metallic stents in open air conditions and envisage the prospects of this approach toward possible medical applicability for the evaluation of implanted stents. Methods: Microwave absorbance spectra between 2.0 and 18.0 GHz were acquired in open air for the characterization of a set of commercial stents using a specifically design setup. Rotating each sample over 360º, 2D absorbance diagrams were generated as a function of frequency and rotation angle. To check our approach for detecting changes in stent length (fracture) and diameter (recoil), two specific tests were performed in open air. Finally, with a few adjustments, this same system provides 2D absorbance diagrams of stents immersed in a water-based phantom, this time over a bandwidth ranging from 0.2 to 1.8 GHz. Results: The authors show that metallic stents exhibit characteristic resonant frequencies in their microwave absorbance spectra in open air which depend on their length and, as a result, may reflect the occurrence of structural distortions. These resonances can be understood considering that such devices behave like dipole antennas in terms of microwave scattering. From fracture tests, the authors infer that microwave spectrometry provides signs of presence of Type I to Type IV stent fractures and allows in particular a quantitative evaluation of Type III and Type IV fractures. Recoil tests show that microwave spectrometry seems able to provide some quantitative assessment of diametrical shrinkage, but only if it involves longitudinal shortening. Finally, the authors observe that the resonant frequencies of stents placed inside the phantom shift down with respect to the corresponding open air frequencies, as it should be expected considering the increase of dielectric permittivity from air to water. Conclusions: The evaluation of stent resonant frequencies provided by microwave spectrometry allows detection and some quantitative assessment of stent fracture and recoil in open air conditions. Resonances of stents immersed in water can be also detected and their characteristic frequencies are in good agreement with theoretical estimates. Although these are promising results, further verifica tion in a more relevant phantom is required in order to foresee the real potential of this approach.
Resumo:
Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.
Resumo:
High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes.
Resumo:
Metallic foreign bodies are rarely found in the maxillary sinus, and usually they have a dental origin.Potential complications related to foreign bodies include recurrent sinusitis, rhinolith formation, cutaneous fistula,chemical poisoning, facial neuralgic pain and even malignancies.Two main surgical approaches are currently used for the removal of foreign bodies in the maxillary sinus: the bone flap and the endoscopic sinus techniques. We are reporting two unusual cases of large high-velocity foreign bodies removed by a modified maxillary lateral antrotomy,with free bone flap repositioning and fixation with a titanium miniplate.
Resumo:
We present the optical properties of Na0.7CoO2 single crystals, measured over a broad spectral range as a function of temperature (T). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Gamma) and effective mass (m*) of the itinerant charge carriers. We find that Gamma(omega) at low temperatures and for similar to omega. This suggests that Na0.7CoO2 is at the verge of a spin-density-wave metallic phase.