971 resultados para Mesh elements
Resumo:
Trace elements zinc, copper, manganese, molybdenum and cobalt have been shown to have varying effects on growth and trace element composition of the silkworm. Results indicate the important role of manganese in the normal metabolism of the insect. Cobalt has been shown to exert a very favourable effect on growth and silk yield.
Resumo:
RECONNECT is a Network-on-Chip using a honeycomb topology. In this paper we focus on properties of general rules applicable to a variety of routing algorithms for the NoC which take into account the missing links of the honeycomb topology when compared to a mesh. We also extend the original proposal [5] and show a method to insert and extract data to and from the network. Access Routers at the boundary of the execution fabric establish connections to multiple periphery modules and create a torus to decrease the node distances. Our approach is scalable and ensures homogeneity among the compute elements in the NoC. We synthesized and evaluated the proposed enhancement in terms of power dissipation and area. Our results indicate that the impact of necessary alterations to the fabric is negligible and effects the data transfer between the fabric and the periphery only marginally.
Resumo:
By using the bender and extender elements tests, the travel times of the shear (S) and the primary (P) waves were measured for dry sand samples at different relative densities and effective confining pressures. Three methods of interpretations, namely, (i) the first time of arrival, (ii) the first peak to peak, and (iii) the cross-correlation method, were employed. All the methods provide almost a unique answer associated with the P-wave measurements. On contrary, a difference was noted in the arrival times obtained from the different methods for the S-wave due to the near field effect. The resonant column tests in the torsional mode were also performed to check indirectly the travel time of the shear wave. The study reveals that as compared to the S-wave, it is more reliable to depend on the arrival times' measurement for the P-wave. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
By using the bender and extender elements tests, the travel times of the shear (S) and the primary (P) waves were measured for dry sand samples at different relative densities and effective confining pressures. Three methods of interpretations, namely, (i) the first time of arrival, (ii) the first peak to peak, and (iii) the cross-correlation method, were employed. All the methods provide almost a unique answer associated with the P-wave measurements. On contrary, a difference was noted in the arrival times obtained from the different methods for the S-wave due to the near field effect. The resonant column tests in the torsional mode were also performed to check indirectly the travel time of the shear wave. The study reveals that as compared to the S-wave, it is more reliable to depend on the arrival times’ measurement for the P-wave.
Resumo:
By using the bender and extender elements tests, together with measurements of the travel times of shear (S) and primary (P) waves, the variation of Poisson ratio (nu) was determined for dry sands with respect to changes in relative densities and effective confining pressures (sigma(3)). The tests were performed for three different ranges of particle sizes. The magnitude of the Poisson ratio decreases invariably with an increase in both the relative density and the effective confining pressure. The effect of the confining pressure on the Poisson ratio was found to become relatively more significant for fine-grained sand as compared with the coarse-grained sand. For a given material, at a particular value of sigma(3), the magnitude of the Poisson ratio decreases, almost in a linear fashion, with an increase in the value of maximum shear modulus (G(max)). The two widely used correlations in literature, providing the relationships among G(max), void ratio (e) and effective confining pressure (sigma(3)), applicable for angular granular materials, were found to compare reasonably well with the present experimental data for the fine- and medium-grained sands. However, for the coarse-grained sand, these correlations tend to overestimate the values of G(max).
Resumo:
Most of the existing research within the business network approach is based on companies that are operating on different levels within the same value chain, as a buyer and a supplier. Intercompetitor cooperation, i.e. cooperation between companies occupying the same level within different value chains, has not been studied to the same extent. Moreover scholars within the business network approach have usually described industrial relationships as long term, consisting of mutual commitment and trust. Industrial relationships are not static, but dynamic, and they contain situations of both harmony and conflict. There is consequently a need for more research both concerning intercompetitor cooperation and conflicts. The purpose of this study is to develop our theoretical and empirical understanding of the nature of conflicts in intercompetitor cooperation from a business network perspective. The focus of the study lies on issue and intensity of conflict. The issue of a conflict can be divided into cause and topic, while the intensity comprises the importance and outcome of a conflict. The empirical part of the study is based on two case studies of groups of cooperating competitors from two different industries. The applied research method is interviews. According to the findings of this study causes of conflicts in intercompetitor cooperation can be divided into three groups: focus, awareness and capacity. Topics of conflict can be related to domain, delivery, advertising or cooperation. Moreover the findings show that conflict situations may be grouped into not important, important or very important. Some conflicts may also be of varying importance, meaning that the importance varies from one point of time to another. Based on the findings of the study the outcome or status of a conflict can be analyzed both on a concrete and general level. The findings also indicate that several conflicts are partly hidden, which means that only one or some of the involved actors perceive the conflict. Furthermore several conflict situations can be related to external network actors.
Resumo:
This is the second part of a two part review on the state-of-the-art in holographic optical elements (HOEs). The aspects of fabrication, evaluation, and applications of HOEs, are discussed in this part. It details the direction of future efforts towards finding work-horse type recording media, developing new methods for the evaluation of HOE, and identifying the areas of application where HOEs are to be considered as indispensable components/tools. Finally a summary of all the suggestions for future work made in the two parts is displayed in Table 2 of this part of the review.
Resumo:
A state-of-the-art review on holographic optical elements (HOE) is presented in two parts. In Part I a conceptual overview and an assessment of the current status on the design of HOE have been included. It is pointed out that HOE development based on the use of squeezed light, speckle, non-linear recording, comparative studies between optics and communication approaches, are some of the promising directions for future research in this vital area of photonics.
Resumo:
Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
Partition of unity methods, such as the extended finite element method, allows discontinuities to be simulated independently of the mesh (Int. J. Numer. Meth. Engng. 1999; 45:601-620). This eliminates the need for the mesh to be aligned with the discontinuity or cumbersome re-meshing, as the discontinuity evolves. However, to compute the stiffness matrix of the elements intersected by the discontinuity, a subdivision of the elements into quadrature subcells aligned with the discontinuity is commonly adopted. In this paper, we use a simple integration technique, proposed for polygonal domains (Int. J. Nuttier Meth. Engng 2009; 80(1):103-134. DOI: 10.1002/nme.2589) to suppress the need for element subdivision. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics and a multi-material problem show that the proposed method yields accurate results. Owing to its simplicity, the proposed integration technique can be easily integrated in any existing code. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.