985 resultados para Marine algae -- Catalonia -- Costa Brava
Resumo:
The effect on lamb muscle of five dietary supplements high in polyunsaturated fatty acids (PUFA) was measured. The supplements were linseed oil, fish oil, protected lipid (high in linoleic acid (C18:2 n-6) and alpha-linolenic acid (C18:3 n-3)), fish oil/marine algae (1:1), and protected lipid/marine algae (1:1). Eicosapentaenoic acid (C20:5 n-3) and docosahexaenoic acid (C22:6 n-3) were found in the highest amounts in the meat from lambs fed diets containing algae. Meat from lambs fed protected lipid had the highest levels of C18:2 n-6 and C18:3 n-3, due to the effectiveness of the protection system. In grilled meat from these animals, volatile compounds derived from n-3 fatty acids were highest in the meat from the lambs fed the fish oil/algae diet, whereas compounds derived from n-6 fatty acids were highest in the meat from the lambs fed the protected lipid diet. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Admiralty Bay is located on the western side of King George Island. Although several research teams of different nationalities have carried out surveys in the region for decades, there are only two publications dealing with the seaweed flora of the bay. Here, we report on a taxonomic survey of the seaweeds we collected during the 25th Brazilian Antarctic Expedition (December 2006/November 2007). We discovered 42 species (21 Rhodophyta, 14 Phaeophyceae, and 7 Chlorophyta), corresponding to an increase of about 31% in the seaweed biodiversity hitherto known for the region. Considering that the Antarctic Peninsula, adjacent to King George Island seems to be one of the most rapidly warming spots on the planet, this kind of survey may provide a valuable tool for detecting eventual changes in seaweed biodiversity.
Resumo:
BACKGROUND: Algae species have been used as an important source of food because they are highly nutritive considering their vitamin, protein, mineral, fiber, essential fatty acid and carbohydrate contents. However, a large number of seaweeds have been poorly studied, especially Brazilian species. Two red macroalgae species from the Brazilian coast (Plocamium brasiliense and Ochtodes secundiramea) were assessed with respect to their total lipid, fatty acid, total nitrogen, protein, amino acid and total carbohydrate contents. RESULTS: The total lipid contents (dry weight) were 36.3 and 35.4 g kg(-1); fatty acid contents were 9.3 and 12.1 g kg(-1); total nitrogen contents were 37.4 and 24.9 g kg(-1); protein contents were 157.2 and 101.0 g kg(-1); amino acid contents were 127.5 and 91.4 g kg(-1); and total carbohydrate contents were 520.3 and 450.7 g kg(-1) for P. brasiliense and O. secundiramea, respectively. CONCLUSION: Considering these compositions, both algae species were determined to have sources of protein, essential amino acids and carbohydrates similar to the edible seaweeds Laminaria japonica and Palmaria palmata. (C) 2011 Society of Chemical Industry
Resumo:
In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
The regulation of the inflammatory response is essential to maintain homeostasis. Several studies have been performed to search new drugs that can contribute to avoiding or minimizing an excessive inflammatory process. The aim of this study was to evaluate the effect of extracts of green algae Caulerpa mexican in models of inflammation. In mice, the model of peritonitis induced inflammatory zymosan pretreatment of mice with aqueous and methanol extracts of C. mexican was able to reduce cell migration to the peritoneal cavity. Treatment of mice with extracts of C. mexican also reduced the ear edema induced by xylene and exerted inhibitory action on the migration of leukocytes in inflammation-induced zymosan the air pouch, and timedependent for the extracts tested in the model of ulcerative colitis induced by DSS 3%, the extract methanol, but not the aqueous C. mexican, significantly reduced the clinical symptoms of colitis, as well as the production of proinflammatory cytokines in the culture of mouse colon, in the histological analysis there was a slight reduction of inflammation in the intestinal mucosa. We concluded that the administration of the extracts resulted in the reduction of cell migration to different sites as well as reducing the edema formation induced by chemical irritant. This study demonstrates for the first time the antiinflammatory effect of aqueous and methanolic extracts from green marine algae Caulerpa mexican
Resumo:
This study aimed at verifying the possibility of replacing calcitic limestone by marine calcium in the diet of layers. A total number of 321 Hi-sex hens, with 40 weeks of age at the beginning of the experiment, was used. A completely randomized experimental design was applied, with 5 treatments (0, 15, 30, 45, and 60 % of calcitic limestone replacement by marine calcium source) and eight replicates of eight birds each. Treatments significantly affected specific gravity (p<0.05), with the inclusion of 60% marine calcium (T5) presenting the worst result as compared to T1, which included only calcitic limestone as calcium source. It was concluded that marine calcium can replace up to 45% of calcitic limestone with no effects on performance or egg quality.
Resumo:
Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.
Resumo:
Background. An interaction between lectins from marine algae and PLA 2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2), isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA 2 isolated from rattlesnake venom (Crotalus durissus cascavella), to better understand the enzymatic and pharmacological mechanisms of the PLA 2 and its complex. Results. This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa), its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24-26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm), but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap). PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA 2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48/80 compound. Conclusion. The unexpected results observed for the PLA2-BTL-2 complex strongly suggest that the pharmacological activity of this PLA2 is not solely dependent on the presence of enzymatic activity, and that other pharmacological regions may also be involved. In addition, we describe for the first time an interaction between two different molecules, which form a stable complex with significant changes in their original biological action. This opens new possibilities for understanding the function and action of crude venom, an extremely complex mixture of different molecules. © 2008 Oliveira et al; licensee BioMed Central Ltd.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Laurencia dendroidea shows high inter- and intrapopulation variability in the amount of the sesquiterpene elatol, caused by genetic variation as well as environmental factors. To test the independent effect of physical and nutritional conditions, the growth and the levels of elatol in L. dendroidea clones were evaluated under different conditions of temperature, salinity, irradiance, and culture medium in the laboratory. Growth of L. dendroidea was clearly affected by all these factors, but elatol levels were influenced only by temperature and salinity. Better conditions for growth did not produce a similar effect on elatol production in L. dendroidea, contradicting the carbon/nutrient balance and growth/differentiation balance models. On the contrary, severe conditions of temperature and salinity promoted a decrease in elatol levels, as predicted by the environmental stress model. Our results using clones indicated that abiotic factors clearly take part in fostering chemical variations observed in natural populations, in addition to genetic factors, and can promote differential susceptibility of plant specimens to natural enemies.
Resumo:
Antioxidant activity and hepatoprotective properties of the aqueous extract and tetrahydrofuran-extracted phenolic fractions of Halimeda opuntia (Linnaeus) Lamouroux were investigated in rats with chemically induced liver injury. Total polyphenols were determined by using the Folin-Ciocalteau reagent. Liver damage was induced by CCl4 and assessed by a histological technique. Reverse transcription/polymerase chain reaction (RT/PCR) analysis showed increased superoxide dismutase (SOD) and catalase (CAT) gene expression and activities in the group treated with free phenolic acid (FPA) fractions of H. opuntia, suggesting inducing effects on both enzymes. In addition, rats treated with FPA fractions displayed lower liver thiobarbituric acid reactive substance (TBARS) levels than those observed for rats in the CCl4-treated group. These data suggest that the phenolic fractions from H. opuntia may protect the liver against oxidative stress-inducing effects of chemicals by modulating its antioxidant enzymes and oxidative status.
Resumo:
Endophytic fungi isolated from the red seaweed Bostrychia radicans were studied to identify their molecularly diverse and biologically active natural chemical products. According to 28S ribosomal DNA-based identification, the strain named C81 was 98% identical to Phomopsis longicolla. This strain was cultivated in solid rice medium and produced three major metabolites identified as 18-deoxycytochalasin H (1), mycophenolic acid (2), and dicerandrol C (3). The chemical structures of these compounds were elucidated by 1D and 2D nuclear magnetic resonance as well as by mass spectrometry. Dicerandrol C had significant antimicrobial activity against Staphylococcus aureus (ATCC 6538) and Staphylococcus saprophyticus (ATCC 15305), with minimum inhibitory concentrations of 1 and 2 mu g ml(-1) (1.33 and 2.66 mu M), respectively. These results show the presence of promising metabolites and indicate that these natural products should be considered in the development of new antibiotics.