374 resultados para Maple Bluff
Resumo:
Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of I cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K*=EI/(0.5 rho(UL3)-L-2), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter plates show significant differences.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms-(1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are colocated. Regions in the space of parameters characterizing the base flow velocity profile, i.e., shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on understanding prior experimental studies of combustion instability in backward facing step combustors and hydrodynamic instability in other flows such as heated jets and bluff body stabilized flames is discussed.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.
Resumo:
基于管道微单元体平衡建立了海管单点提升的非线性力学模型的控制微分方程组,使用变弧长的无量纲代换将动边界问题化为固定边界的两点边值问题,利用maple环境下编制的两点边值问题的打靶法程序得到了该问题在各个提升阶段的数值解答和在单点提升过程中管道的极限弯矩约为0.71q~{1/3}(EI)~{2/3}。
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
Resumo:
在圆柱绕流的非定常流动中,相应于旋涡的周期性脱落柱后的二次分离是周期性间断发生。二次涡的影响不能忽略。但对长时间流动的模拟还必须考虑尾涡的环量衰减。模拟Bluff Body流动有效的离散涡模型应包括二次分离及尾涡衰减两种机因。本文数值计算结果证明了上述结论。
Resumo:
首先从涡脱落生成理论出发对钝体尾流控制方法进行了分类,并简单介绍r国内尾流控制研究情况.之后介绍r我们用窄条或小方柱取代小圆柱后,对Strykowsky和Sreenivasan控制方法的改进及其在高雷诺数下对圆柱和方柱尾流涡脱落的有效抑制情况,并探讨了控制件钝度对抑制效果的影响.第3部分用实验数据对各个涡脱落生成模型做了分析与检验,指出控制件方法的机理与改变钝体分离位置、减小钝体背压吸力、改变流动的腱向相关性、防止钝体两侧剪切层相互作用等无关,而与钝体近尾流速度剖面的局部修正及其稳定性的改变有关.最后简单介绍了控制件方法今后研究工作展望及其工程应用前景.
Resumo:
基于管道微单元体平衡建立了海管单点提升的非线性力学模型的控制微分方程组,使用变弧长的无量纲代换将动边界问题化为固定边界的两点边值问题,利用Maple环境下编制的两点边值问题的打靶法程序得到了该问题在各个提升阶段的数值解答和在单点提升过程中管道的极限弯矩约为0.71q~(1/3)(EI)~(2/3)。
Resumo:
本书注重从简单问题入手,利用手工计算理解有限元基本思想,编程实现体会实现过程,ANSYS验证说明自编程序的有效性。采用计算机代数系统编程环境大大简化了代码编制,使读者能够将更多的注意力集中在实现程序编制的具体步骤上。ANSYS验证也是读者掌握商用有限元程序的捷径。
本书的使用能够使读者在较短的时间内,理解有限元基本思想和实现过程,同时学会使用计算机代数系统和ANSYS软件。
本书适合大学本科二年级以上的学生和研究生使用,也可供从事结构分析和设计的其他人员参考。
Resumo:
Nesta dissertação é apresentada uma modelagem analítica para o processo evolucionário formulado pela Teoria da Evolução por Endossimbiose representado através de uma sucessão de estágios envolvendo diferentes interações ecológicas e metábolicas entre populações de bactérias considerando tanto a dinâmica populacional como os processos produtivos dessas populações. Para tal abordagem é feito uso do sistema de equações diferenciais conhecido como sistema de Volterra-Hamilton bem como de determinados conceitos geométricos envolvendo a Teoria KCC e a Geometria Projetiva. Os principais cálculos foram realizados pelo pacote de programação algébrica FINSLER, aplicado sobre o MAPLE.
Resumo:
Within a wind farm, multiple turbine wakes can interact and have a substantial effect on the overall power production. This makes an understanding of the wake recovery process critically important to optimizing wind farm efficiency. Vertical-axis wind turbines (VAWTs) exhibit features that are amenable to dramatically improving this efficiency. However, the physics of the flow around VAWTs is not well understood, especially as it pertains to wake interactions, and it is the goal of this thesis to partially fill this void. This objective is approached from two broadly different perspectives: a low-order view of wind farm aerodynamics, and a detailed experimental analysis of the VAWT wake.
One of the contributions of this thesis is the development of a semi-empirical model of wind farm aerodynamics, known as the LRB model, that is able to predict turbine array configurations to leading order accuracy. Another contribution is the characterization of the VAWT wake as a function of turbine solidity. It was found that three distinct regions of flow exist in the VAWT wake: (1) the near wake, where periodic blade shedding of vorticity dominates; (2) a transition region, where growth of a shear-layer instability occurs; (3) the far wake, where bluff-body oscillations dominate. The wake transition can be predicted using a new parameter, the dynamic solidity, which establishes a quantitative connection between the wake of a VAWT and that of a circular cylinder. The results provide insight into the mechanism of the VAWT wake recovery and the potential means to control it.
Resumo:
Para qualquer sistema observado, físico ou qualquer outro, geralmente se deseja fazer predições para sua evolução futura. Algumas vezes, muito pouco é conhecido sobre o sistema. Se uma série temporal é a única fonte de informação no sistema, predições de valores futuros da série requer uma modelagem da lei da dinâmica do sistema, talvez não linear. Um interesse em particular são as capacidades de previsão do modelo global para análises de séries temporais. Isso pode ser um procedimento muito complexo e computacionalmente muito alto. Nesta dissertação, nos concetraremos em um determinado caso: Em algumas situações, a única informação que se tem sobre o sistema é uma série sequencial de dados (ou série temporal). Supondo que, por detrás de tais dados, exista uma dinâmica de baixa dimensionalidade, existem técnicas para a reconstrução desta dinâmica.O que se busca é desenvolver novas técnicas para poder melhorar o poder de previsão das técnicas já existentes, através da programação computacional em Maple e C/C++.
Resumo:
Discolouration of sands and other marine substrata caused by benthic diatoms have been reported by Aleem (1950) Eaton and Moss (1975), Sullivan (1980), Maple (1983), Navarro (1983) and Wah and Wee (1988). However, this is for the first time such a phenomenon is being reported from a mangrove habitat of Karachi. It was caused by a pennate diatom Navicula cancellata Donkin.
Resumo:
This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.
Resumo:
This paper explores the ignition and subsequent evolution of spray flames in a bluff-body configuration with and without swirl. Ethanol and n-heptane are used to compare the effects of volatility. Ignition is performed by a laser spark. High speed imaging of OH *-chemiluminescence and OH-PLIF collected at 5kHz are used to investigate the behaviour of the flames during the first stages of ignition and the stable flame structure following ignition. Swirl induces a wider and shorter flame, precession, and multiple reaction zones, while the non-swirling flames have a simpler structure. The reaction fronts seem thinner with ethanol than with heptane. The dataset can be used for model validation. © 2012 Elsevier Inc.