963 resultados para Manuzio, family of printers, Venice.
Resumo:
The transcription factor PU.1 is essential for terminal myeloid differentiation, B- and T-cell development, erythropoiesis and hematopoietic stem cell maintenance. PU.1 functions as oncogene in Friend virus-induced erythroleukemia and as tumor suppressor in acute myeloid leukemias. Moreover, Friend virus-induced erythroleukemia requires maintenance of PU.1 expression and the disruption of p53 function greatly accelerates disease progression. It has been hypothesized that p53-mediated expression of the p21(Cip1) cell cycle inhibitor during differentiation of pre-erythroleukemia cells promotes selection against p53 function. In addition to the blockage of erythroblast differentiation provided by increased levels of PU.1, we propose that PU.1 alters p53 function. We demonstrate that PU.1 reduces the transcriptional activity of the p53 tumor suppressor family and thus inhibits activation of genes important for cell cycle regulation and apoptosis. Inhibition is mediated through binding of PU.1 to the DNA-binding and/or oligomerization domains of p53/p73 proteins. Lastly, knocking down endogenous PU.1 in p53 wild-type REH B-cell precursor leukemia cells leads to increased expression of the p53 target p21(Cip1).
Resumo:
The present paper examines the syntactic and semantic properties of a group of constructions which carry an idiomatic interpretation of obtainment. In Polish and German, the constructions under consideration consist of a verb with a directional particle followed by an object NP, as exemplified in (1a)-(1b). (1a) Adam wynurkował starego buta. (Polish) Adam wy- snorkeled old shoe. ‘Adam found an old shoe while snorkeling.’ (1b) Michael erboxte sich den Titel. (German) Michael er- boxed REFL the title. ‘Michael boxed his way to the (championship) title.’ Sentences containing these constructions will be assumed to have the same basic interpretation “Subject obtains/produces Object by V-ing”. A constructional analysis of the constructions will be proposed, as they pose licensing problems and their interpretation cannot be accounted for in terms of the individual conceptual structures of the lexical items composing the sentence. Unlike most accounts of verb particle constructions based on implicit or explicit assumptions of straightforward semantic composition, the present study proposes an analysis under which the semantic structure of verb particle combinations is not a compositional function of the verb and the particle/prefix alone. It is argued that the construction comes with its own subcategorization frame (separate from that carried by the verb) which is motivated by the meaning of the construction and its corresponding constructional subevent. Additionally, a crosslinguistic correlation will be shown to hold between a language’s ability to express event conflation (Talmy 1985, 2000) and the occurrence of some form of the construction in that language. This will be taken as an indication of the resultative nature of those types of directional phrases which involve the semantic interpretation of boundary crossing.
Resumo:
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Resumo:
The SLC13 family comprises five genes (SLC13A1, SLC13A2, SLC13A3, SLC13A4, and SLC13A5) encoding structurally related multi-spanning transporters (8-13 transmembrane domains) with orthologues found in prokaryotes and eukaryotes. Mammalian SLC13 members mediate the electrogenic Na(+)-coupled anion cotransport at the plasma membrane of epithelial cells (mainly kidney, small intestine, placenta and liver) or cells of the central nervous system. While the two SLC13 cotransporters NaS1 (SLC13A1) and NaS2 (SLC13A4) transport anions such sulfate, selenate and thiosulfate, the three other SLC13 members, NaDC1 (SLC13A2), NaCT (SLC13A5) and NaDC3 (SLC13A3), transport di- and tri-carboxylate Krebs cycle intermediates such as succinate, citrate and α-ketoglutarate. All these transporters play a variety of physiological and pathophysiological roles in the different organs. Thus, the purpose of this review is to summarize the roles of SLC13 members in human physiology and pathophysiology and what the therapeutic perspectives are. We have also described the most recent advances on the structure, expression, function and regulation of SLC13 transporters.
Resumo:
Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.
Resumo:
The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.
Resumo:
We report that three (EF0089, EF2505 and EF1896, renamed here Fss1, Fss2 and Fss3, respectively, for Enterococcus faecalis surface protein) of the recently predicted MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) in E. faecalis strain V583 bind fibrinogen (Fg). Despite an absence of extensive primary sequence homology, the three proteins appear to be related structurally. Within the N-terminal regions of the three enterococcal proteins, we identified pairs of putative IgG-like modules with a high degree of predicted structural similarity to the Fg-binding N2 and N3 domains of the staphylococcal MSCRAMMs ClfA and SdrG. A second N2N3-like segment was predicted in Fss1. Far-UV circular dichroism spectroscopy revealed that all four predicted N2N3-like regions are composed mainly of beta-sheets with only a minor proportion of alpha-helices, which is characteristic of Ig-like folded domains. Three of the four identified enterococcal N2N3-like regions showed potent dose-dependent binding to Fg. However, the specificity of the Fg-binding MSCRAMMs differs, as indicated by far-Western blots, which showed that recombinant segments of the MSCRAMMs bound different Fg polypeptide chains. Enterococci grown in serum-supplemented broth adhere to Fg-coated surfaces, and inactivation in strain OG1RF of the gene encoding Fss2 resulted in reduced adherence, whilst complementation of the mutant restored full Fg adherence. Thus, E. faecalis contains a family of MSCRAMMs that structurally and functionally resemble the Fg-binding MSCRAMMs of staphylococci.
Resumo:
Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.
Resumo:
The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms.
Resumo:
Uptake and compartmentation of reduced glutathione (GSH), oxidized glutathione (GSSG), and glutathione conjugates are important for many functions including sulfur transport, resistance against biotic and abiotic stresses, and developmental processes. Complementation of a yeast (Saccharomyces cerevisiae) mutant (hgt1) deficient in glutathione transport was used to characterize a glutathione transporter cDNA (OsGT1) from rice (Oryza sativa). The 2.58-kb full-length cDNA (AF393848, gi 27497095), which was obtained by screening of a cDNA library and 5'-rapid amplification of cDNA ends-polymerase chain reaction, contains an open reading frame encoding a 766-amino acid protein. Complementation of the hgt1 yeast mutant strain with the OsGT1 cDNA restored growth on a medium containing GSH as the sole sulfur source. The strain expressing OsGT1 mediated H-3]GSH uptake, and this uptake was significantly competed not only by unlabeled GSSG and GS conjugates but also by some amino acids and peptides, suggesting a wide substrate specificity. OsGT1 may be involved in the retrieval of GSSG, GS conjugates, and nitrogen-containing peptides from the cell wall.
Resumo:
A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.
Resumo:
Located in the northeastern region of Italy, the Venetian Plain (VP) is a sedimentary basin containing an extensively exploited groundwater system. The northern part is characterised by a large undifferentiated phreatic aquifer constituted by coarse grain alluvial deposits and recharged by local rainfalls and discharges from the rivers Brenta and Piave. The southern plain is characterised by a series of aquitards and sandy aquifers forming a well-defined artesian multi-aquifer system. In order to determine origins, transit times and mixing proportions of different components in groundwater (GW), a multi tracer study (H, He/He, C, CFC, SF, Kr, Ar, Sr/Sr, O, H, cations, and anions) has been carried out in VP between the rivers Brenta and Piave. The geochemical pattern of GW allows a distinction of the different water origins in the system, in particular based on View the MathML source HCO3-,SO42-,Ca/Mg,NO3-, O, H. A radiogenic Sr signature clearly marks GW originated from the Brenta and Tertiary catchments. End-member analysis and geochemical modelling highlight the existence of a mixing process involving waters recharged from the Brenta and Piave rivers, from the phreatic aquifer and from another GW reservoirs characterised by very low mineralization. Noble gas excesses in respect to atmospheric equilibrium occur in all samples, particularly in the deeper aquifers of the Piave river, but also in phreatic water of the undifferentiated aquifers. He–H ages in the phreatic aquifer and in the shallower level of the multi-aquifer system indicate recharge times in the years 1970–2008. The progression of H–He ages with the distance from the recharge areas together with initial tritium concentration (H + Hetrit) imply an infiltration rate of about 1 km/y and the absence of older components in these GW. SF and Kr data corroborate these conclusions. H − He ages in the deeper artesian aquifers suggest a dilution process with older, tritium free waters. C Fontes–Garnier model ages of the old GW components range from 1 to 12 ka, yielding an apparent GW velocity of about 1–10 m/y. Increase of radiogenic He follows the progression of C ages. Ar, radiogenic He and C tracers yield model-dependent age-ranges in overall good agreement once diffusion of C from aquitards, GW dispersion, lithogenic Ar production, and He production-rate heterogeneities are taken into account. The rate of radiogenic He increase with time, deduced by comparison with C model ages, is however very low compared to other studies. Comparison with C and C data obtained 40 years ago on the same aquifer system shows that exploitation of GW caused a significant loss of the old groundwater reservoir during this time.
Resumo:
compiled by Elias Ullmann