987 resultados para MOBILITY GAP
Resumo:
In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.
Resumo:
In some delay-tolerant communication systems such as vehicular ad-hoc networks, information flow can be represented as an infectious process, where each entity having already received the information will try to share it with its neighbours. The random walk and random waypoint models are popular analysis tools for these epidemic broadcasts, and represent two types of random mobility. In this paper, we introduce a simulation framework investigating the impact of a gradual increase of bias in path selection (i.e. reduction of randomness), when moving from the former to the latter. Randomness in path selection can significantly alter the system performances, in both regular and irregular network structures. The implications of these results for real systems are discussed in details.
Resumo:
Density functional theory (DFT) calculations were performed to study the structural, mechanical, electrical, optical properties, and strain effects in single-layer sodium phosphidostannate(II) (NaSnP). We find the exfoliation of single-layer NaSnP from bulk form is highly feasible because the cleavage energy is comparable to graphite and MoS2. In addition, the breaking strain of the NaSnP monolayer is comparable to other widely studied 2D materials, indicating excellent mechanical flexibility of 2D NaSnP. Using the hybrid functional method, the calculated band gap of single-layer NaSnP is close to the ideal band gap of solar cell materials (1.5 eV), demonstrating great potential in future photovoltaic application. Furthermore, strain effect study shows that a moderate compression (2%) can trigger indirect-to-direct gap transition, which would enhance the ability of light absorption for the NaSnP monolayer. With sufficient compression (8%), the single-layer NaSnP can be tuned from semiconductor to metal, suggesting great applications in nanoelectronic devices based on strain engineering techniques.
Resumo:
This study uses the reverse salient methodology to contrast subsystems in video game consoles in order to discover, characterize, and forecast the most significant technology gap. We build on the current methodologies (Performance Gap and Time Gap) for measuring the magnitude of Reverse Salience, by showing the effectiveness of Performance Gap Ratio (PGR). The three subject subsystems in this analysis are the CPU Score, GPU core frequency, and video memory bandwidth. CPU Score is a metric developed for this project, which is the product of the core frequency, number of parallel cores, and instruction size. We measure the Performance Gap of each subsystem against concurrently available PC hardware on the market. Using PGR, we normalize the evolution of these technologies for comparative analysis. The results indicate that while CPU performance has historically been the Reverse Salient, video memory bandwidth has taken over as the quickest growing technology gap in the current generation. Finally, we create a technology forecasting model that shows how much the video RAM bandwidth gap will grow through 2019 should the current trend continue. This analysis can assist console developers in assigning resources to the next generation of platforms, which will ultimately result in longer hardware life cycles.
Resumo:
The evolution of technological systems is hindered by systemic components, referred to as reverse salients, which fail to deliver the necessary level of technological performance thereby inhibiting the performance delivery of the system as a whole. This paper develops a performance gap measure of reverse salience and applies this measurement in the study of the PC (personal computer) technological system, focusing on the evolutions of firstly the CPU (central processing unit) and PC game sub-systems, and secondly the GPU (graphics processing unit) and PC game sub-systems. The measurement of the temporal behavior of reverse salience indicates that the PC game sub-system is the reverse salient, continuously trailing behind the technological performance of the CPU and GPU sub-systems from 1996 through 2006. The technological performance of the PC game sub-system as a reverse salient trails that of the CPU sub-system by up to 2300 MHz with a gradually decreasing performance disparity in recent years. In contrast, the dynamics of the PC game sub-system as a reverse salient trails the GPU sub-system with an ever increasing performance gap throughout the timeframe of analysis. In addition, we further discuss the research and managerial implications of our findings.
Resumo:
OBJECTIVES: Gender bias has been found in medical literature, with more men than women as first or senior authors of papers, despite about half of doctors being women. Nursing is about 90% female, so we aimed to determine if similar biases exist in nursing literature. DESIGN: Taking the eight non-specialist nursing journals with the highest impact factors for that profession, we counted the numbers of men and women first authors over 30 years. SETTING: We used nursing journals from around the world which attract the highest impact factors for nursing publication. PARTICIPANTS: Eight journals qualified for entry, three from the United Kingdom, four from the United States of America, and one from Australia. MAIN OUTCOME MEASURES Using Chi-square and Fisher exact tests, we determined differences between the numbers of men and women across all the journals, between countries (USA, UK and Australia), changes over the 30 years, and changes within journals over time. RESULTS Despite the small proportion of men in the nursing workforce, up to 30% of first authors were men. UK journals were more likely to have male authors than USA journals, and this increased over time. USA journals had proportions of male first authors consistent with the male proportion of its nursing workforce. CONCLUSIONS In the UK (though not in the USA) gender bias in nursing publishing exists, even though the nursing workforce is strongly feminized. This warrants further research, but is likely to be due to the same reasons for the gender gap in medical publishing; that is, female nurses take time out to have families, and social and family responsibilities prevent them taking opportunities for career progression, whereas men's careers often are not affected in such ways.
Resumo:
Disconnector switch operation in GIS generates VFT voltages in the system. It is important, for insulation co-ordination purposes, to obtain accurate VFT V-t data for typical gap geometries found in GIS. This paper presents experimentally obtained VFT V-t data for a 180/1 lOmm co-axial gap. The VFT has a time to first peak of 35 ns and a oscillation frequency of 13,6 MHz. Due to the location of the voltage divider in a compartment adjacent to the gap, a correction factor of 1.1 is used to relate the measured breakdown voltage to that in the gap. Positive polarity VFT V-t data is presented for 1, 2, 3 and 4 bar absolute and negative polarity VFT data for 3 and 4 bar absolute. Two methods of generating the VFT's are used. The first is to power up the test transformer at power frequency. The second is to generate a switching impulse by discharging a capacitor into the primary of the test transformer.
Resumo:
A highly extended dithienothiophene comonomer building block was used in combination with highly fused aromatic furan substituted diketopyrrolopyrrole for the synthesis of novel donor–acceptor alternating copolymer PDPPF-DTT. Upon testing PDPPF-DTT as a channel semiconductor in top contact bottom gate organic field effect transistors (OFETs), it was found to exhibit p-channel behaviour. The highest hole mobility of 3.56 cm2 V−1 s−1 was reported for PDPPF-DTT. To our knowledge, this is the highest mobility reported so far for the furan flanked diketopyrrolopyrrole class of copolymers using conventional device geometry with straightforward processing.
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
Australian fundraisers and their organisational leaders (CEOs and board members) diverge sometimes in how they think about fundraising. In fact, eight key differences emerged in the recent Australian study that sparked this paper. A strong fundraising/leadership accord in attitudes toward fundraising would seem to be important, especially in tightened funding regimes. Both demand and competition for funding beyond the government dollar is growing. Many organisations are moving into community fundraising for the first time due to imperilled government funding. The sophistication of all donation sources is likewise on the rise. These factors add complexity to the fundraising role and to the task of boards and CEOs in managing fundraising strategy and activity. Some variances in professional outlook might be predictable between fundraisers and fundraising organisation leaders. However, the differences found in our study are in areas that potentially affect the organisation’s ability to fill its mission. It is advisable then to ‘mind the gap’ and also to explore it.
Resumo:
The concept of energy gap(s) is useful for understanding the consequence of a small daily, weekly, or monthly positive energy balance and the inconspicuous shift in weight gain ultimately leading to overweight and obesity. Energy gap is a dynamic concept: an initial positive energy gap incurred via an increase in energy intake (or a decrease in physical activity) is not constant, may fade out with time if the initial conditions are maintained, and depends on the 'efficiency' with which the readjustment of the energy imbalance gap occurs with time. The metabolic response to an energy imbalance gap and the magnitude of the energy gap(s) can be estimated by at least two methods, i.e. i) assessment by longitudinal overfeeding studies, imposing (by design) an initial positive energy imbalance gap; ii) retrospective assessment based on epidemiological surveys, whereby the accumulated endogenous energy storage per unit of time is calculated from the change in body weight and body composition. In order to illustrate the difficulty of accurately assessing an energy gap we have used, as an illustrative example, a recent epidemiological study which tracked changes in total energy intake (estimated by gross food availability) and body weight over 3 decades in the US, combined with total energy expenditure prediction from body weight using doubly labelled water data. At the population level, the study attempted to assess the cause of the energy gap purported to be entirely due to increased food intake. Based on an estimate of change in energy intake judged to be more reliable (i.e. in the same study population) and together with calculations of simple energetic indices, our analysis suggests that conclusions about the fundamental causes of obesity development in a population (excess intake vs. low physical activity or both) is clouded by a high level of uncertainty.
Resumo:
Spontaneous emission (SE) of a Quantum emitter depends mainly on the transmission strength between the upper and lower energy levels as well as the Local Density of States (LDOS)[1]. When a QD is placed in near a plasmon waveguide, LDOS of the QD is increased due to addition of the non-radiative decay and a plasmonic decay channel to free space emission[2-4]. The slow velocity and dramatic concentration of the electric field of the plasmon can capture majority of the SE into guided plasmon mode (Гpl ). This paper focused on studying the effect of waveguide height on the efficiency of coupling QD decay into plasmon mode using a numerical model based on finite elemental method (FEM). Symmetric gap waveguide considered in this paper support single mode and QD as a dipole emitter. 2D simulation models are done to find normalized Гpl and 3D models are used to find probability of SE decaying into plasmon mode ( β) including all three decay channels. It is found out that changing gap height can increase QD-plasmon coupling, by up to a factor of 5 and optimally placed QD up to a factor of 8. To make the paper more realistic we briefly studied the effect of sharpness of the waveguide edge on SE emission into guided plasmon mode. Preliminary nano gap waveguide fabrication and testing are already underway. Authors expect to compare the theoretical results with experimental outcomes in the future
Resumo:
High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.
Resumo:
Flow patterns and aerodynamic characteristics behind three side-by-side square cylinders has been found depending upon the unequal gap spacing (g1 = s1/d and g2 = s2/d) between the three cylinders and the Reynolds number (Re) using the Lattice Boltzmann method. The effect of Reynolds numbers on the flow behind three cylinders are numerically studied for 75 ≤ Re ≤ 175 and chosen unequal gap spacings such as (g1, g2) = (1.5, 1), (3, 4) and (7, 6). We also investigate the effect of g2 while keeping g1 fixed for Re = 150. It is found that a Reynolds number have a strong effect on the flow at small unequal gap spacing (g1, g2) = (1.5, 1.0). It is also found that the secondary cylinder interaction frequency significantly contributes for unequal gap spacing for all chosen Reynolds numbers. It is observed that at intermediate unequal gap spacing (g1, g2) = (3, 4) the primary vortex shedding frequency plays a major role and the effect of secondary cylinder interaction frequencies almost disappear. Some vortices merge near the exit and as a result small modulation found in drag and lift coefficients. This means that with the increase in the Reynolds numbers and unequal gap spacing shows weakens wakes interaction between the cylinders. At large unequal gap spacing (g1, g2) = (7, 6) the flow is fully periodic and no small modulation found in drag and lift coefficients signals. It is found that the jet flows for unequal gap spacing strongly influenced the wake interaction by varying the Reynolds number. These unequal gap spacing separate wake patterns for different Reynolds numbers: flip-flopping, in-phase and anti-phase modulation synchronized, in-phase and anti-phase synchronized. It is also observed that in case of equal gap spacing between the cylinders the effect of gap spacing is stronger than the Reynolds number. On the other hand, in case of unequal gap spacing between the cylinders the wake patterns strongly depends on both unequal gap spacing and Reynolds number. The vorticity contour visualization, time history analysis of drag and lift coefficients, power spectrum analysis of lift coefficient and force statistics are systematically discussed for all chosen unequal gap spacings and Reynolds numbers to fully understand this valuable and practical problem.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail