823 resultados para MECHANICAL-PROPERTIES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon). Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol%) and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX), except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans) for 24 h. Cell viability (n = 3) was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS) and elastic modulus (E) were tested on a universal testing machine (n = 8). Compound release and chemical stability were evaluated by UV spectrophotometry and (1)H NMR (n = 3). Data were analyzed by one-way ANOVA and Tukey's test ( α = 0.05). Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P < 0.05). Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P < 0.05). The 24 h compound release rates were ACY: 1.33 μg/mL and CHX: 1.92 μg/mL. (1)H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials.
Resumo:
New titanium alloys for biomedical applications have been developed primarily with the addition of Nb, Ta, Mo, and Zr, because those elements stabilize the β phase and they don’t cause cytotoxicity in the organism. The objective of this paper is to analyze the effect of molybdenum on the structure, microstructure, and selected mechanical properties of Ti-15Zr-xMo (x = 5, 10, 15, and 20 wt%) alloys. The samples were produced in an arc-melting furnace with inert argon atmosphere, and they were hot-rolled and homogenized. The samples were characterized using chemical, structural, and microstructural analysis. The mechanical analysis was made using Vickers microhardness and Young’s modulus measurements. The compositions of the alloys were sensitive to the molybdenum concentration, indicating the presence of α’+α”+β phases in the Ti-15Zr-5Mo alloy, α”+β in the Ti-15Zr-10Mo alloy, and β phase in the Ti-15Zr-15Mo and Ti-15Zr-20Mo alloys. The mechanical properties showed favorable values for biomedical application in the alloys presenting high hardness and low Young’s modulus compared with CP-Ti.
Resumo:
Titanium alloys are among the most important and frequently used class of biomaterials. In addition to biocompatibility, it is important that an implant material present satisfactory mechanical properties that allow long term use in the body. To improve such properties, different heat treatments are used, as well as doping with oxygen. The presence of interstitial oxygen in the crystal lattice causes deformation, increases the hardness, and causes modifications in anelasticity, thereby decreasing the elastic modulus. In this study, an alloy was prepared by arc melting precursor metals, heat and mechanically treated, and doped with oxygen, resulting in samples with different processing conditions. In each condition, the alloy was characterised in terms of amount of oxygen, X-ray diffraction, and optical microscopy. In addition, properties of the alloy, such as hardness and elastic modulus, were analysed.
Resumo:
This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.