818 resultados para MCMC algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nominal Unification is an extension of first-order unification where terms can contain binders and unification is performed modulo α equivalence. Here we prove that the existence of nominal unifiers can be decided in quadratic time. First, we linearly-reduce nominal unification problems to a sequence of freshness and equalities between atoms, modulo a permutation, using ideas as Paterson and Wegman for first-order unification. Second, we prove that solvability of these reduced problems may be checked in quadràtic time. Finally, we point out how using ideas of Brown and Tarjan for unbalanced merging, we could solve these reduced problems more efficiently

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Background: We previously derived a clinical prognostic algorithm to identify patients with pulmonary embolism (PE) who are at low-risk of short-term mortality who could be safely discharged early or treated entirely in an outpatient setting. Objectives: To externally validate the clinical prognostic algorithm in an independent patient sample. Methods: We validated the algorithm in 983 consecutive patients prospectively diagnosed with PE at an emergency department of a university hospital. Patients with none of the algorithm's 10 prognostic variables (age >/= 70 years, cancer, heart failure, chronic lung disease, chronic renal disease, cerebrovascular disease, pulse >/= 110/min., systolic blood pressure < 100 mm Hg, oxygen saturation < 90%, and altered mental status) at baseline were defined as low-risk. We compared 30-day overall mortality among low-risk patients based on the algorithm between the validation and the original derivation sample. We also assessed the rate of PE-related and bleeding-related mortality among low-risk patients. Results: Overall, the algorithm classified 16.3% of patients with PE as low-risk. Mortality at 30 days was 1.9% among low-risk patients and did not differ between the validation and the original derivation sample. Among low-risk patients, only 0.6% died from definite or possible PE, and 0% died from bleeding. Conclusions: This study validates an easy-to-use, clinical prognostic algorithm for PE that accurately identifies patients with PE who are at low-risk of short-term mortality. Low-risk patients based on our algorithm are potential candidates for less costly outpatient treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.