964 resultados para Linear equations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apresentamos uma versão inicial da solução em desenvolvimento para estimação dos efeitos desejados através do modelo animal univariado, utilizando duas abordagens distintas para a obtenção do melhor estimador linear não viesado (BLUP) dos parâmetros do modelo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mean action time is the mean of a probability density function that can be interpreted as a critical time, which is a finite estimate of the time taken for the transient solution of a reaction-diffusion equation to effectively reach steady state. For high-variance distributions, the mean action time under-approximates the critical time since it neglects to account for the spread about the mean. We can improve our estimate of the critical time by calculating the higher moments of the probability density function, called the moments of action, which provide additional information regarding the spread about the mean. Existing methods for calculating the nth moment of action require the solution of n nonhomogeneous boundary value problems which can be difficult and tedious to solve exactly. Here we present a simplified approach using Laplace transforms which allows us to calculate the nth moment of action without solving this family of boundary value problems and also without solving for the transient solution of the underlying reaction-diffusion problem. We demonstrate the generality of our method by calculating exact expressions for the moments of action for three problems from the biophysics literature. While the first problem we consider can be solved using existing methods, the second problem, which is readily solved using our approach, is intractable using previous techniques. The third problem illustrates how the Laplace transform approach can be used to study coupled linear reaction-diffusion equations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical methods are often used to analyse commercial catch and effort data to provide standardised fishing effort and/or a relative index of fish abundance for input into stock assessment models. Achieving reliable results has proved difficult in Australia's Northern Prawn Fishery (NPF), due to a combination of such factors as the biological characteristics of the animals, some aspects of the fleet dynamics, and the changes in fishing technology. For this set of data, we compared four modelling approaches (linear models, mixed models, generalised estimating equations, and generalised linear models) with respect to the outcomes of the standardised fishing effort or the relative index of abundance. We also varied the number and form of vessel covariates in the models. Within a subset of data from this fishery, modelling correlation structures did not alter the conclusions from simpler statistical models. The random-effects models also yielded similar results. This is because the estimators are all consistent even if the correlation structure is mis-specified, and the data set is very large. However, the standard errors from different models differed, suggesting that different methods have different statistical efficiency. We suggest that there is value in modelling the variance function and the correlation structure, to make valid and efficient statistical inferences and gain insight into the data. We found that fishing power was separable from the indices of prawn abundance only when we offset the impact of vessel characteristics at assumed values from external sources. This may be due to the large degree of confounding within the data, and the extreme temporal changes in certain aspects of individual vessels, the fleet and the fleet dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Galerkin representations and integral representations are obtained for the linearized system of coupled differential equations governing steady incompressible flow of a micropolar fluid. The special case of 2-dimensional Stokes flows is then examined and further representation formulae as well as asymptotic expressions, are generated for both the microrotation and velocity vectors. With the aid of these formulae, the Stokes Paradox for micropolar fluids is established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The third-kind linear integral equation Image where g(t) vanishes at a finite number of points in (a, b), is considered. In general, the Fredholm Alternative theory [[5.]] does not hold good for this type of integral equation. However, imposing certain conditions on g(t) and K(t, t′), the above integral equation was shown [[1.], 49–57] to obey a Fredholm-type theory, except for a certain class of kernels for which the question was left open. In this note a theory is presented for the equation under consideration with some additional assumptions on such kernels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theory of Varley and Cumberbatch [l] giving the intensity of discontinuities in the normal derivatives of the dependent variables at a wave front can be deduced from the more general results of Prasad which give the complete history of a disturbance not only at the wave front but also within a short distance behind the wave front. In what follows we omit the index M in Eq. (2.25) of Prasad [2].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Backlund transformations relating the solutions of linear PDE with variable coefficients to those of PDE with constant coefficients are found, generalizing the study of Varley and Seymour [2]. Auto-Backlund transformations are also determined. To facilitate the generation of new solutions via Backlund transformation, explicit solutions of both classes of the PDE just mentioned are found using invariance properties of these equations and other methods. Some of these solutions are new.