885 resultados para Linear ATC
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.
Resumo:
Based on Lucas functions, an improved version of the Diffie-Hellman distribution key scheme and to the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm.
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
This paper applies recently developed heterogeneous nonlinear and linear panel unit root tests that account for cross-sectional dependence to 24 OECD and 33 non-OECD countries’ consumption-income ratios over the period 1951–2003. We apply a recently developed methodology that facilitates the use of panel tests to identify which individual cross-sectional units are stationary and which are nonstationary. This extends evidence provided in the recent literature to consider both linear and nonlinear adjustment in panel unit root tests, to address the issue of cross-sectional dependence, and to substantially expand both time-series and cross sectional dimensions of the data analysed. We find that the majority (65%) of the series are nonstationary with slightly fewer OECD countries’ (61%) series exhibiting a unit root than non-OECD countries (68%).
Resumo:
We extend the linear reforms introduced by Pf¨ahler (1984) to the case of dual taxes. We study the relative effect that linear dual tax cuts have on the inequality of income distribution -a symmetrical study can be made for dual linear tax hikes-. We also introduce measures of the degree of progressivity for dual taxes and show that they can be connected to the Lorenz dominance criterion. Additionally, we study the tax liability elasticity of each of the reforms proposed. Finally, by means of a microsimulation model and a considerably large data set of taxpayers drawn from 2004 Spanish Income Tax Return population, 1) we compare different yield-equivalent tax cuts applied to the Spanish dual income tax and 2) we investigate how much income redistribution the dual tax reform (Act ‘35/2006’) introduced with respect to the previous tax.
Resumo:
We describe the relation between two characterizations of conjugacy in groups of piecewise-linear homeomorphisms, discovered by Brin and Squier in [2] and Kassabov and Matucci in [5]. Thanks to the interplay between the techniques, we produce a simplified point of view of conjugacy that allows ua to easily recover centralizers and lends itself to generalization.
Resumo:
Guba and Sapir asked, in their joint paper [8], if the simultaneous conjugacy problem was solvable in Diagram Groups or, at least, for Thompson's group F. We give an elementary proof for the solution of the latter question. This relies purely on the description of F as the group of piecewise linear orientation-preserving homeomorphisms of the unit. The techniques we develop allow us also to solve the ordinary conjugacy problem as well, and we can compute roots and centralizers. Moreover, these techniques can be generalized to solve the same questions in larger groups of piecewise-linear homeomorphisms.
Resumo:
Based on third order linear sequences, an improvement version of the Diffie-Hellman distribution key scheme and the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm.
Resumo:
For piecewise linear Lorenz map that expand on average, we show that it admits a dichotomy: it is either periodic renormalizable or prime. As a result, such a map is conjugate to a ß-transformation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
We prove existence theorems for the Dirichlet problem for hypersurfaces of constant special Lagrangian curvature in Hadamard manifolds. The first results are obtained using the continuity method and approximation and then refined using two iterations of the Perron method. The a-priori estimates used in the continuity method are valid in any ambient manifold.