986 resultados para Likelihood function
Resumo:
Many traffic situations require drivers to cross or merge into a stream having higher priority. Gap acceptance theory enables us to model such processes to analyse traffic operation. This discussion demonstrated that numerical search fine tuned by statistical analysis can be used to determine the most likely critical gap for a sample of drivers, based on their largest rejected gap and accepted gap. This method shares some common features with the Maximum Likelihood Estimation technique (Troutbeck 1992) but lends itself well to contemporary analysis tools such as spreadsheet and is particularly analytically transparent. This method is considered not to bias estimation of critical gap due to very small rejected gaps or very large rejected gaps. However, it requires a sufficiently large sample that there is reasonable representation of largest rejected gap/accepted gap pairs within a fairly narrow highest likelihood search band.
Resumo:
Many drivers in highly motorised countries believe that aggressive driving is increasing. While the prevalence of the behaviour is difficult to reliably identify, the consequences of on-road aggression can be severe, with extreme cases resulting in property damage, injury and even death. This research program was undertaken to explore the nature of aggressive driving from within the framework of relevant psychological theory in order to enhance our understanding of the behaviour and to inform the development of relevant interventions. To guide the research a provisional ‘working’ definition of aggressive driving was proposed encapsulating the recurrent characteristics of the behaviour cited in the literature. The definition was: “aggressive driving is any on-road behaviour adopted by a driver that is intended to cause physical or psychological harm to another road user and is associated with feelings of frustration, anger or threat”. Two main theoretical perspectives informed the program of research. The first was Shinar’s (1998) frustration-aggression model, which identifies both the person-related and situational characteristics that contribute to aggressive driving, as well as proposing that aggressive behaviours can serve either an ‘instrumental’ or ‘hostile’ function. The second main perspective was Anderson and Bushman’s (2002) General Aggression Model. In contrast to Shinar’s model, the General Aggression Model reflects a broader perspective on human aggression that facilitates a more comprehensive examination of the emotional and cognitive aspects of aggressive behaviour. Study One (n = 48) examined aggressive driving behaviour from the perspective of young drivers as an at-risk group and involved conducting six focus groups, with eight participants in each. Qualitative analyses identified multiple situational and person-related factors that contribute to on-road aggression. Consistent with human aggression theory, examination of self-reported experiences of aggressive driving identified key psychological elements and processes that are experienced during on-road aggression. Participants cited several emotions experienced during an on-road incident: annoyance, frustration, anger, threat and excitement. Findings also suggest that off-road generated stress may transfer to the on-road environment, at times having severe consequences including crash involvement. Young drivers also appeared quick to experience negative attributions about the other driver, some having additional thoughts of taking action. Additionally, the results showed little difference between males and females in the severity of behavioural responses they were prepared to adopt, although females appeared more likely to displace their negative emotions. Following the self-reported on-road incident, evidence was also found of a post-event influence, with females being more likely to experience ongoing emotional effects after the event. This finding was evidenced by ruminating thoughts or distraction from tasks. However, the impact of such a post-event influence on later behaviours or interpersonal interactions appears to be minimal. Study Two involved the quantitative analysis of n = 926 surveys completed by a wide age range of drivers from across Queensland. The study aimed to explore the relationships between the theoretical components of aggressive driving that were identified in the literature review, and refined based on the findings of Study One. Regression analyses were used to examine participant emotional, cognitive and behavioural responses to two differing on-road scenarios whilst exploring the proposed theoretical framework. A number of socio-demographic, state and trait person-related variables such as age, pre-study emotions, trait aggression and problem-solving style were found to predict the likelihood of a negative emotional response such as frustration, anger, perceived threat, negative attributions and the likelihood of adopting either an instrumental or hostile behaviour in response to Scenarios One and Two. Complex relationships were found to exist between the variables, however, they were interpretable based on the literature review findings. Factor analysis revealed evidence supporting Shinar’s (1998) dichotomous description of on-road aggressive behaviours as being instrumental or hostile. The second stage of Study Two used logistic regression to examine the factors that predicted the potentially hostile aggressive drivers (n = 88) within the sample. These drivers were those who indicated a preparedness to engage in direct acts of interpersonal aggression on the road. Young, male drivers 17–24 years of age were more likely to be classified as potentially hostile aggressive drivers. Young drivers (17–24 years) also scored significantly higher than other drivers on all subscales of the Aggression Questionnaire (Buss & Perry, 1992) and on the ‘negative problem orientation’ and ‘impulsive careless style’ subscales of the Social Problem Solving Inventory – Revised (D’Zurilla, Nezu & Maydeu-Olivares, 2002). The potentially hostile aggressive drivers were also significantly more likely to engage in speeding and drink/drug driving behaviour. With regard to the emotional, cognitive and behavioural variables examined, the potentially hostile aggressive driver group also scored significantly higher than the ‘other driver’ group on most variables examined in the proposed theoretical framework. The variables contained in the framework of aggressive driving reliably distinguished potentially hostile aggressive drivers from other drivers (Nagalkerke R2 = .39). Study Three used a case study approach to conduct an in-depth examination of the psychosocial characteristics of n = 10 (9 males and 1 female) self-confessed hostile aggressive drivers. The self-confessed hostile aggressive drivers were aged 24–55 years of age. A large proportion of these drivers reported a Year 10 education or better and average–above average incomes. As a group, the drivers reported committing a number of speeding and unlicensed driving offences in the past three years and extensive histories of violations outside of this period. Considerable evidence was also found of exposure to a range of developmental risk factors for aggression that may have contributed to the driver’s on-road expression of aggression. These drivers scored significantly higher on the Aggression Questionnaire subscales and Social Problem Solving Inventory Revised subscales, ‘negative problem orientation’ and ‘impulsive/careless style’, than the general sample of drivers included in Study Two. The hostile aggressive driver also scored significantly higher on the Barrett Impulsivity Scale – 11 (Patton, Stanford & Barratt, 1995) measure of impulsivity than a male ‘inmate’, or female ‘general psychiatric’ comparison group. Using the Carlson Psychological Survey (Carlson, 1982), the self-confessed hostile aggressive drivers scored equal or higher scores than the comparison group of incarcerated individuals on the subscale measures of chemical abuse, thought disturbance, anti-social tendencies and self-depreciation. Using the Carlson Psychological Survey personality profiles, seven participants were profiled ‘markedly anti-social’, two were profiled ‘negative-explosive’ and one was profiled as ‘self-centred’. Qualitative analysis of the ten case study self-reports of on-road hostile aggression revealed a similar range of on-road situational factors to those identified in the literature review and Study One. Six of the case studies reported off-road generated stress that they believed contributed to the episodes of aggressive driving they recalled. Intense ‘anger’ or ‘rage’ were most frequently used to describe the emotions experienced in response to the perceived provocation. Less frequently ‘excitement’ and ‘fear’ were cited as relevant emotions. Notably, five of the case studies experienced difficulty articulating their emotions, suggesting emotional difficulties. Consistent with Study Two, these drivers reported negative attributions and most had thoughts of aggressive actions they would like to take. Similarly, these drivers adopted both instrumental and hostile aggressive behaviours during the self-reported incident. Nine participants showed little or no remorse for their behaviour and these drivers also appeared to exhibit low levels of personal insight. Interestingly, few incidents were brought to the attention of the authorities. Further, examination of the person-related characteristics of these drivers indicated that they may be more likely to have come from difficult or dysfunctional backgrounds and to have a history of anti-social behaviours on and off the road. The research program has several key theoretical implications. While many of the findings supported Shinar’s (1998) frustration-aggression model, two key areas of difference emerged. Firstly, aggressive driving behaviour does not always appear to be frustration driven, but can also be driven by feelings of excitation (consistent with the tenets of the General Aggression Model). Secondly, while the findings supported a distinction being made between instrumental and hostile aggressive behaviours, the characteristics of these two types of behaviours require more examination. For example, Shinar (1998) proposes that a driver will adopt an instrumental aggressive behaviour when their progress is impeded if it allows them to achieve their immediate goals (e.g. reaching their destination as quickly as possible); whereas they will engage in hostile aggressive behaviour if their path to their goal is blocked. However, the current results question this assertion, since many of the hostile aggressive drivers studied appeared prepared to engage in hostile acts irrespective of whether their goal was blocked or not. In fact, their behaviour appeared to be characterised by a preparedness to abandon their immediate goals (even if for a short period of time) in order to express their aggression. The use of the General Aggression Model enabled an examination of the three components of the ‘present internal state’ comprising emotions, cognitions and arousal and how these influence the likelihood of a person responding aggressively to an on-road situation. This provided a detailed insight into both the cognitive and emotional aspects of aggressive driving that have important implications for the design of relevant countermeasures. For example, the findings highlighted the potential value of utilising Cognitive Behavioural Therapy with aggressive drivers, particularly the more hostile offenders. Similarly, educational efforts need to be mindful of the way that person-related factors appear to influence one’s perception of another driver’s behaviour as aggressive or benign. Those drivers with a predisposition for aggression were more likely to perceive aggression or ‘wrong doing’ in an ambiguous on-road situation and respond with instrumental and/or hostile behaviour, highlighting the importance of perceptual processes in aggressive driving behaviour.
Resumo:
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Resumo:
This paper proposes the use of eigenvoice modeling techniques with the Cross Likelihood Ratio (CLR) as a criterion for speaker clustering within a speaker diarization system. The CLR has previously been shown to be a robust decision criterion for speaker clustering using Gaussian Mixture Models. Recently, eigenvoice modeling techniques have become increasingly popular, due to its ability to adequately represent a speaker based on sparse training data, as well as an improved capture of differences in speaker characteristics. This paper hence proposes that it would be beneficial to capitalize on the advantages of eigenvoice modeling in a CLR framework. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, resulting in a 35.1% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
...the probabilistic computer simulation study by Dunham and colleagues evaluating the impact of different cervical spine management (CSM) strategies on tetraplegia and brain injury outcomes.1 Based on literature findings, expert opinion and with use of advances programming techniques the authors conclude that early collar removal without cervical spine magnetic resonance imaging (MRI) is a preferable CSM strategy for comatose, blunt trauma patients with extremity movement and a negative cervical spine computed tomography(CT) scan. Although we do not have the required expertise to comment on the applied statistical approach, we would like to comment on one of the medical assumptions raised by the authors, namely the likelihood of tetraplegia in this specific population....