993 resultados para Light curing unit
Resumo:
The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.
Resumo:
Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.
Resumo:
The 66 kilo-Dalton (k-Da) protein split off from the cross linked myosin heavy chain (CMHC) formed due to the setting of Alaska pollack surimi, frozen-storage of Pacific cod flesh, and vinegar-curing of Pacific mackerel mince was identified as a light meromyosin (LMM). Puncture and stress-relaxation tests showed that the actomyosin subunits (AMS) of Alaska pollack surimi, upon setting at 30°C, transformed into gel, although the elasticity of this gel was very low when compared to the gels from surimi or actomyosin (AM). Electrophoretic studies showed that the band due to LMM in the gel from AMS gradually disappeared with the progress of setting but higher molecular weight polymer did not form. The intensity of the bands due to other myosin sub-fragments decreased a little. The findings suggest that at setting temperature, LMM of MHC molecule leads to an unfolding resulting in an intramolecular aggregation through non-covalent interactions, and thus plays a significant role in the crosslinking of MHC.
Resumo:
Multiple color states have been realized in single unit cell using double electrochromic (EC) reaction. The precise control of bistability in EC compounds which can maintain several colors on the two separated electrodes allows this new type of pixel to be realized. The specific electrical driving gives a way to maintain both sides in the reduced EC states and this colors overlapping in the vertical view direction can achieve the black state. The four color states (G, B, W, BK) in one cell/pixel can make a valuable progress to achieve a high quality color devices such like electronic paper, outdoor billboard, smart window and flexible display using external light source. © 2012 Optical Society of America.
Resumo:
Back Light Unit (BLU) and Color Filter are the two key components for the perfect color display of Liquid Crystal Display (LCD) device. LCD can not light actively itself, so a form of illumination, Back Light Unit is needed for its display. The color filter which consists of RGB primary colors, is used to generate three basic colors for LCD display. Traditional CCFL back light source has several disadvantages, while LED back light technology makes LCD obtain quite higher display quality than the CCFL back light. LCD device based on LED back light owns promoted efficiency of display. Moreover it can generate color gamut above 100% of the NTSC specification. Especially, we put forward an idea of Color Filter-Less technology that we design a film which is patterned of red and green emitting phosphors, then make it be excited by a blue light LED panel we fabricate, for its special emitting mechanism, this film can emit RGB basic color, therefore replace the color filter of LCD device. This frame typically benefits for lighting uniformity and provide pretty high light utilization ratio. Also simplifies back light structure thus cut down the expenses.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
We report a high molar extinction coefficient organic sensitizer for high efficiency dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a similar to 7% cell showing an excellent stability measured under the thermal and light soaking dual stress. This is expected to have an important practical consequence on the production of flexible, low-cost, and lightweight DSC based on plastic matrix.
Resumo:
In this article, we report the effects of the thickness of metal and oxide layers of the Al/WO3/Au interconnecting structure on the electrical and optical characteristics of the and bottom units of the two-unit stacked organic-light-emitting-devices (OLEDs). It is found that light emission performance of the upper unit is sensitive to the transmittance of semitransparent Al/WO3/Au structure, which can be improved by changing the thickness of each layer of the Al/WO3/Au structure. It is important to note that the introduction WO3 between Al and Au significantly enhances the current efficiency of both the upper and bottom units with respect to that of the corresponding Al/Au structure without WO3. In addition, the emission spectra of both the upper and bottom units are narrower than that of the control device due to microcavity effect. Our results indicate that the All WO3/Au interconnecting structure is a good candidate for fabricating independently controllable high efficiency stacked OLEDs.
Resumo:
The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.
Resumo:
An interconnecting layer of Al (2 nm)/WO3 (3 nm)/Au (16 nm) was studied for application in tandem organic light-emitting devices. It can be seen that the Al/WO3/Au structure plays the role of an excellent interconnecting layer. The introduction of WO3 in the connection unit significantly improves the device efficiency as compared to the case of Al/Au. Thus, the current efficiency of the two-unit tandem devices is enhanced by two factors with respect to the one-unit devices. The green two-unit tandem device of indium tin oxide/MoO3/4,4(')-N,N-'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl(NPB)/tris(8-hydroxylquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one (C545T)/Alq(3)/LiF/Al/WO3/Au/MoO3/NPB/Alq(3):C545T/Alq(3)/LiF/Al showed a maximum current efficiency of 33.9 cd/A and a power efficiency of 12.0 lm/W.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
By incorporating 4,7-diphenyl- 2,1,3 benzothiadiazole instead of 2,1,3-benzothiadiazole into the backbone of polyfluorene, we developed a novel series of green light- emitting polymers with much improved color purity. Compared with the state-of-the-art green light-emitting polymer, poly(fluorene-co-benzothiadiazole) (lambda max = 537 nm), the resulting polymers (lambda(max) = 521 nm) showed 10-20 nm blueshifted electroluminescence (EL) spectra and greatly improved color purity because the insertion of two phenylene units between the 2,1,3-benzothiadiazole unit and the fluorene unit reduced the effective conjugation length in the vicinity of the 2,1,3-benzothiadiazole unit. As a result, the resulting polymers emitted pure green light with CIE coordinates of (0.29, 0.63), which are very close to (0.26, 0.65) of standard green emission demanded by the National Television System Committee (NTSC). Moreover, the insertion of the phenylene unit did not affect the photoluminescence (PL) and EL efficiencies of the resulting polymers. PL quantum efficiency in solid films up to 0.82 was demonstrated. Single-layer devices (ITO/PEDOT/ polymer/Ca/Al) of these polymers exhibited a turn-on voltage of 4.2 V, luminous efficiency of 5.96 cd A(-1) and power efficiency of 2.21 lm W-1. High EL efficiencies and good color purities made these polymers very promising for display applications.
Resumo:
A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).
Resumo:
Novel hole-transporting molecules containing 1,4-bis(carbazolyl)benzene as a central unit and different numbers of diphenylamine moieties as the peripheral groups have been synthesized and characterized. These compounds are thermally stable with high glass transition temperatures of 141-157 degreesC and exhibit chemically reversible redox processes. Their amorphous state stability and hole transport properties can be significantly improved by increasing the number of diphenylamine moieties in the outer part and by controlling the symmetry of the carbazole-based molecules. These compounds can be used as good hole-tran sporting materials for organic electroluminescent (EL) devices. The device performance based on tri- and tetra-substituted carbazole derivatives is comparable to that of a typical 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (NPB)-based device.
Resumo:
The dopant/host concept, which is an efficient approach to enhance the electroluminescence (EL) efficiency and stability for organic light-emitting diodes (OLEDs) devices, has been applied to design efficient and stable blue light-emitting polymers. By covalently attaching 0.2 mol % highly fluorescent 4-dimethylamino-1,8-naphthalimide (DMAN) unit (photoluminescence quantum efficiency: Phi(PL)=0.84) to the pendant chain of polyfluorene, an efficient and colorfast blue light-emitting polymer with a dopant/host system and a molecular dispersion feature was developed. The single-layer device (indium tin oxide/PEDOT/polymer/Ca/Al) exhibited the maximum luminance efficiency of 6.85 cd/A and maximum power efficiency of 5.38 lm/W with the CIE coordinates of (0.15, 0.19). Moreover, no undesired long-wavelength green emission was observed in the EL spectra when the device was thermal annealed in air at 180 degrees C for 1 h before cathode deposition. These significant improvements in both efficiency and color stability are due to the charge trapping and energy transfer from polyfluorene host to highly fluorescent DMAN dopant in the molecular level.