733 resultados para KLEBSIELLA PNEUMONIAE
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
A infecção do trato urinário (ITU) é uma das doenças mais comuns na infância e em 80 a 90% dos casos é causada por bactérias da família Enterobacteriaceae, especialmente Escherichia coli e Klebsiella pneumoniae, as quais no mundo inteiro têm emergido como produtoras de ESBL, um dos principais mecanismos de resistência bacteriana a cefalosporinas de espectro-estendido e monobactans. A prevalência da ITU em crianças, bem como as variáveis, sexo, idade, febre, bactéria mais frequente, presença de refluxo vesico-ureteral (RVU), presença de cicatrizes renais foram avaliadas no período de janeiro de 2006 a março de 2009, em hospital público de belém, região norte do Brasil e no período de abril a agosto de 2009, isolados de cepas de E. coli e K. pneumoniae foram obtidos de urina de crianças menores de 16 anos e avaliados fenotipicamente através do método automatizado de caracterização de ESBL, Vitek2, juntamente com a PCR para determinar se os genes blaTEM, blaSHV e blaCTX-M1 estavam presentes em cada organismo. Foram confirmados 199 casos de ITU no período estudado, 54,2% eram do sexo feminino, 46,2% eram menores de 02 anos de idade, febre ocorreu em 37,3% dos casos, RVU foi identificado em 38,6% das crianças com ITU e cicatriz renal em 38%, a bactéria mais frequente foi a E. coli (60%). Foram isoladas 43 amostras ( E. coli e K. pneumoniae, 74,4% e 25,6%, respectivamente), 95% foi resistente a ampicilina e sulfametoxazol-trimetroprim; 23,2% apresentaram fenótipo ESBL. O gene blaCTX-M1 foi o mais prevalente, encontrado em 19 cepas, seguido do gene blaTEM (18 cepas) e blaSHV (8 cepas). Esse estudo mostrou que bactérias com perfil de resistência ESBLcirculam no ambiente hospitalar em Belém e que os genes blaCTX-M1 e blaTEM e blaSHV estão presentes em cepas de E. coli e K. pneumoniae causadoras de ITU em crianças na região norte do Brasil.
Resumo:
A tartaruga da amazônia (Podocnemis expansa) corresponde a um recurso faunístico muito importante para as populações ribeirinhas da região amazônica, além de ser uma das principais espécies indicadas para produção em cativeiro. O consumo dessa espécie como alimento na região, gerou uma demanda de estudos quanto à questão sanitária e seu impacto na saúde pública. O principal objetivo deste trabalho foi avaliar a microbiota intestinal de tartarugas da amazônia de vida livre e cativeiro, verificando a ocorrência de bactérias da Família Enterobacteriaceae no trato intestinal desses animais. Para isso, foram utilizadas 116 tartarugas adultas, de ambos os sexos, sendo que, 51 foram capturadas na Ilha de São Miguel, município de Santarém (PA), 50 animais pertenciam a um cativeiro comercial e 15 eram provenientes de um criadouro conservacionista, localizados na região metropolitana de Belém, Pará. De cada animal, foi colhida amostra de material biológico cloacal, utilizando-se swabs estéreis para em seguida serem acondicionados em tubos com meios de transporte e enviados ao laboratório para análises bacteriológicas. Todas as amostras foram imersas em caldos Selenito e BHI durante 24 horas e posteriormente semeadas em Agar Shigella-Salmonella e Agar Mac Conkey na temperatura de 37ºC por 24 horas. As UFCs (Unidades formadoras de colônia) foram semeadas em Agar Muller Hilton por mais 24 horas em estufa a 37ºC e identificadas pelo sistema Vitek® totalmente automatizado. Do total de 116 amostras foram obtidos 245 crescimentos bacterianos nos quais 83 (33,87%) eram provenientes dos animais de vida livre, com a identificação de 20 espécies bacterianas. Nos animais mantidos em cativeiro, foram obtidos 162 (65,72%) isolamentos, identificando-se 10 espécies de bactérias. Oito espécies foram encontradas em ambos os ambientes e 14 espécies em apenas um deles. A espécie Klebsiella pneumoniae foi a mais frequente, com 52 isolamentos, totalizando 21,22% dos crescimentos bacterianos, seguida de Enterobacter cloacae (35/14,29%), Serratia marcescens (29/11,84%) e Salmonella species (24/9,80%). Nos quelônios de vida livre, os microrganismos mais isolados constituiram-se dos genêros Enterobacter, Klebsiella, Citrobacter e Aeromonas. Klebsiella pneumoniae, Serratia marcescens, Enterobacter cloacae e Salmonella spp. apresentaram frequências elevadas naqueles animais cativos. Este resultado evidencia uma maior diversidade de microrganismos entre os animais de vida livre e uma contaminação elevada por amostra nos animais de cativeiro. As espécies Salmonella sp., E. coli e Acinetobacter ssp., tiveram sua frequência aumentada provavelmente devido a influência do cativeiro, sendo portanto, sugeridas como indicativas da qualidade sanitária de populações da tartaruga da Amazônia.
Resumo:
The catalytic function of extended-spectrum β-lactamases can result in high degrees of bacterial resistance to β-lactamic antimicrobials and in the emergence of ESBL among the members of Enterobacteriaceae family, especially Klebsiella pneumoniae and Escherichia coli. This occurs due to the dissemination and emergence of new variants of these enzymes caused by the high utilization of antibiotics like broad-spectrum cephalosporins. The ESBL are β-lactamases capable of conferring bacterial resistance to the penicillins, 1st, 2nd and 3rd generation cephalosporins, and aztreonam (but not cephamycins and carbapenems) through the hydrolysis of these antibiotics. In view of this phenomenon, the exact screening and detection of the producers of ESBL are essential for the appropriate selection of the antimicrobial therapy. The purposes of this study were to evaluate the best antimicrobial for the selection of ESBL producers and to determine the best method for the detection of such microorganisms. We evaluated 200 sequential bacterial samples including the species Klebsiella pneumoniae (56.5%), Escherichia coli (34%), Proteus mirabilis (8.5%) and Klebsiella oxytoca (1%), previously characterized as ESBL producers between February and September 2008 in the Laboratory of Microbiology, Botucatu Medical School - UNESP, Botucatu, São Paulo State, Brazil. To select the ESBL-producer bacteria, we used the disks recommended by CLSI 2008, aztreonam (ATM), cefpodoxime (CPD), ceftriaxone (CRO), cefotaxime (CTX) and ceftazidime (CAZ), besides cefepime (FEP). ESBL production was confirmed by three methods: double disk screening, ESBL Etest®, and Vitek® automated system. The disks employed in the double disk screening were: penicillin associated with β-lactamase inhibitor, amoxicillin-clavulanic acid, and two β-lactamic antibiotics, ceftazidime and cefotaxime...(Complete abstract click electronic access below)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Background: Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods: A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 mu g/mL ozone/oxygen (1: 99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (10(5) bacteria/dish). The cultures were divided into 3 groups: 1-ozone-oxygen gaseous mixture containing 20 mu g of O-3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results: The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion: A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.
Resumo:
A new trend in cosmetic formulations is the use of biotechnological raw materials as the polysaccharides from Klebsiella pneumoniae, which are supposed to enhance cell renewal, improve skin hydration and micro-relief. Botanical extracts of Myrtus communis leaves contain different sugars, which may provide the same benefits. Thus, the objective of this study was to evaluate through objective and subjective analysis the immediate and long-term effects of cosmetic formulations containing polysaccharides biotechnologically-originated and / or the ones contained in Myrtus communis extracts. Three polysaccharide-based and placebo formulations were applied on the forearm skin of 40 volunteers. Skin hydration, transepidermal water loss (TEWL), viscoelasticity and skin micro-relief measurements were made before and 2 hours after a single application and after 15 and 30 day-periods of daily applications. Answers to a questionnaire about perceptions of formulation cosmetic features constituted the subjective analysis. All polysaccharide-based formulations enhanced skin hydration. Formulations with isolated or combined active substances improved skin barrier function as compared to placebo, in the short and long term studies. Formulations containing Myrtus communis extracts had the highest acceptance. Results suggest that daily use of formulations containing these substances is important for protection of the skin barrier function.
Resumo:
5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
Resumo:
Background and aims Endophytic and rhizospheric environments differ in many respects, leading to the presence of different bacterial communities at each site. However, microorganisms such as enterobacteria can be found both within plants and in the surrounding soil. Bacteria must present differences in the traits that affect such environments in order to successfully colonise them. The present study compared the plant growth-promoting potential of diazotrophic enterobacteria isolated from the rhizosphere and from within surface-disinfected plants. Methods A total of 46 diazotrophic enterobacterial strains (21 rhizospheric and 25 putatively endophytic) belonging to the Klebsiella and Enterobacter genera, which are prevalent in sugar cane plantations, were isolated from the rhizosphere and from surface-disinfected plants. Their ability to synthesise amino acids using combined nitrogen obtained from nitrogen fixation, and their ability to synthesise indole-3-acetic acid (IAA) were determined by high performance liquid chromatography. Endogenous ethylene production by the bacteria was measured using gas chromatography, and biocontrol of phytopathogenic fungi was determined qualitatively using a dual culture technique. Results The putative endophytes released significantly higher amounts of amino acids than the rhizospheric bacteria, whilst the latter produced higher quantities of ethylene and were more actively antagonistic to fungi. Both types of bacteria released similar amounts of IAA. Conclusion Endophytic and rhizospheric bacteria differ in their capacity to release plant growth-promoting substances, which may be a reflection of their adaptations and an indication of their potential impact on their natural environment.
Resumo:
The aim of this study was to develop a formulation, containing the propolis standardized extract (EPP-AF (R)), which can assist in the healing of skin lesions. To achieve this objective the antimicrobial activity and chemical composition of the propolis extract was determined. The final product was subjected to in vitro and in vivo pre-clinical evaluation. The broth macrodi-lution method was used to determine the antimicrobial activity of the extracts and formulations against the microorganisms most commonly found in burns, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. Wistar rats with puncture wounded skin were used to evaluate the wound healing properties of propolis. The results of chemical and biological characterization demonstrated the batch-to-batch reproducibility of the standardized extract which is an unprecedented result. The antimicrobial and wound healing activity of the pharmaceutical studied showed the best results when samples contain 3.6% propolis, suggesting that this is the most promising composition.
Resumo:
In this study, we investigated the presence of plasmid-mediated quinolone resistance (PMQR) genes among 101 ciprofloxacin-resistant urinary Escherichia coli isolates and searched for mutations in the quinolone-resistance-determining regions (QRDRs) of the DNA gyrase and topoisomerase IV genes in PMQR-carrying isolates. Eight isolates harboured the qnr and aac(6')-Ib-cr genes (3 qnrS1, 1 qnrB19 and 4 aac(6')-Ib-cr). A mutational analysis of the QRDRs in qnr and aac(6')-Ib-cr-positive isolates revealed mutations in gyrA, parC and parE that might be associated with high levels of resistance to quinolones. No mutation was detected in gyrB. Rare gyrA, parC and parE mutations were detected outside of the QRDRs. This is the first report of qnrB19, qnrS1 and aac(6')-Ib-cr-carrying E. coli isolates in Brazil.
Resumo:
BACKGROUND While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. Traveling to countries with a high MDRO prevalence increases the risk of acquiring such an organism. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area (so-called transfer patients). Factors predicting colonization could serve as screening criteria to better target those at highest risk. METHODS This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period. Laboratory screening tests focused on Gram-negative MDROs and methicillin-resistant Staphylococcus aureus (MRSA). RESULTS A total of 235 transfer patients were screened and analyzed, of which 43 (18 %) were positive for an MDRO. Most of them yielded Gram-negative bacteria (42; 98 %), with only a single screening revealing MRSA (2 %); three screenings showed a combination of Gram-negative bacteria and MRSA. For the risk factor analysis we focused on the 42 Gram-negative MDROs. Most of them were ESBL-producing Escherichia coli and Klebsiella pneumoniae while only two were carbapenemase producers. In univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p < 0.001), surgical procedure in a hospital abroad (p = 0.007), and - on admission to our hospital - active infection (p = 0.002), antibiotic treatment (p = 0.014) and presence of skin lesions (p = 0.001). Only hospitalization outside of Europe (Odds Ratio, OR 3.2 (95 % CI 1.5- 6.8)) and active infection on admission (OR 2.7 (95 % CI 1.07- 6.6)) remained as independent predictors of Gram-negative MDRO colonization. CONCLUSION Our data suggest that a large proportion of patients (i.e., 82 %) transferred to Switzerland from hospitals in high MDRO prevalence areas are unnecessarily screened for MDRO colonization. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.
Resumo:
To avoid the undesired deprotonation during the addition of organolithium and organomagnesium reagents to ketones, the thioiminium salts, easily prepared from lactams and amides are converted into 2,2-disubstituted and 2-monosubstituted amines by reaction with simple nucleophiles such as organocerium and organocopper reagents. The reaction of thioiminium iodides with organocerium reagents derived by transmetalation of corresponding lithium reagents with anhydrous cerium(III) chloride has been investigated. These thioiminium iodides act as good electrophiles and accept alkylceriums towards bisaddition. The newly synthesized amines have been characterized by 1H and 13C NMR, IR and mass spectra. The amines have been converted into their hydrochlorides and characterized by COSY. These hydrochlorides have been subjected to antimicrobial screening with clinically isolated microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Candida albicans. The hydrochlorides show quite good activity against these bacteria and fungus.