884 resultados para Internal marker and nutrient
Resumo:
The effects of inclusion of pea hulls (PH) in the diet on growth performance, development of the gastrointestinal tract and nutrient retention were studied in broilers from 1 to 18d of age. There were a control diet based on low fibre ingredients (69.3 total dietary fibre (16.1g crude fibre/kg)) and three additional diets that resulted from the dilution of the basal diet with 25, 50 and 75g PH/kg (81.2, 93.2, and 105.1g total dietary fibre/kg diet, respectively). Each treatment was replicated six times and the experimental unit was a cage with 12 chicks. Growth performance, development of the gastrointestinal tract and the coefficients of total tract apparent retention (CTTAR) of nutrients were recorded at 6, 12 and 18d of age. In addition, jejunal morphology was measured at 12 and 18d and the coefficients of apparent ileal digestibility (CAID) of nutrients at 18d of age. Pea hulls inclusion affected all the parameters studied. The inclusion of 25 and 50g PH/kg diet improved growth performance as compared to the control diet. The relative weight (g/kg body weight) of proventriculus (P≤0.01), gizzard (P≤0.001) and ceca (P≤0.05) increased linearly as the level of PH in the diet increased. The inclusion of PH affected quadratically (P≤0.01) villus height:crypt depth ratio with the highest value shown at 25g PH/kg. In general, the CTTAR and CAID of nutrients increased linearly and quadratically (P≤0.05) with increasing levels of PH, showing maximum values with PH level between 25 and 50g/kg diet. We conclude that the size of the digestive organs increases with increasing levels of PH in the diet. In general, the best performance and nutrient digestibility values were observed with levels of PH within the range of 25 and 50g/kg. Therefore, young broilers have a requirement for a minimum amount of dietary fibre. When pea hulls are used as a source of fibre, the level of total dietary fibre required for optimal performance is within the range of 81.2–93.2g/kg diet (25.6–35.0g crude fibre/kg diet). An excess of total dietary fibre (above 93.2g/kg diet) might reduce nutrient digestibility and growth performance to values similar to those observed with the control diet.
Resumo:
Quality assessment is one of the activities performed as part of systematic literature reviews. It is commonly accepted that a good quality experiment is bias free. Bias is considered to be related to internal validity (e.g., how adequately the experiment is planned, executed and analysed). Quality assessment is usually conducted using checklists and quality scales. It has not yet been proven;however, that quality is related to experimental bias. Aim: Identify whether there is a relationship between internal validity and bias in software engineering experiments. Method: We built a quality scale to determine the quality of the studies, which we applied to 28 experiments included in two systematic literature reviews. We proposed an objective indicator of experimental bias, which we applied to the same 28 experiments. Finally, we analysed the correlations between the quality scores and the proposed measure of bias. Results: We failed to find a relationship between the global quality score (resulting from the quality scale) and bias; however, we did identify interesting correlations between bias and some particular aspects of internal validity measured by the instrument. Conclusions: There is an empirically provable relationship between internal validity and bias. It is feasible to apply quality assessment in systematic literature reviews, subject to limits on the internal validity aspects for consideration.
Resumo:
The influence of CP content and ingredient complexity, feed form, and duration of feeding of the Phase I diets on growth performance and total tract apparent digestibility -TTAD- of energy and nutrients was studied in Iberian pigs weaned at 28 d of age. There were 12 dietary treatments with 2 type of feeds -high-quality, HQ; and low-quality, LQ-, 2 feed forms -pellets vs. mash-, and 3 durations -7, 14, and 21 d- of supply of the Phase I diets.
Resumo:
For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells.
Resumo:
Los alimentos son sistemas complejos, formados por diversas estructuras a diferentes escalas: macroscópica y microscópica. Muchas propiedades de los alimentos, que son importantes para su procesamiento, calidad y tratamiento postcosecha, están relacionados con su microestructura. La presente tesis doctoral propone una metodología completa para la determinación de la estructura de alimentos desde un punto de vista multi-escala, basándose en métodos de Resonancia Magnética Nuclear (NMR). Las técnicas de NMR son no invasivas y no destructivas y permiten el estudio tanto de macro- como de microestructura. Se han utilizado distintos procedimientos de NMR dependiendo del nivel que se desea estudiar. Para el nivel macroestructural, la Imagen de Resonancia Magnética (MRI) ha resultado ser muy útil para la caracterización de alimentos. Para el estudio microestructural, la MRI requiere altos tiempos de adquisición, lo que hace muy difícil la transferencia de esta técnica a aplicaciones en industria. Por tanto, la optimización de procedimientos de NMR basados en secuencias relaxometría 2D T1/T2 ha resultado ser una estrategia primordial en esta tesis. Estos protocolos de NMR se han implementado satisfactoriamente por primera vez en alto campo magnético. Se ha caracterizado la microestructura de productos alimentarios enteros por primera vez utilizando este tipo de protocolos. Como muestras, se han utilizado dos tipos de productos: modelos de alimentos y alimentos reales (manzanas). Además, como primer paso para su posterior implementación en la industria agroalimentaria, se ha mejorado una línea transportadora, especialmente diseñada para trabajar bajo condiciones de NMR en trabajos anteriores del grupo LPF-TAGRALIA. Se han estudiado y seleccionado las secuencias más rápidas y óptimas para la detección de dos tipos de desórdenes internos en manzanas: vitrescencia y roturas internas. La corrección de las imágenes en movimiento se realiza en tiempo real. Asimismo, se han utilizado protocolos de visión artificial para la clasificación automática de manzanas potencialmente afectadas por vitrescencia. El presente documento está dividido en diferentes capítulos: el Capítulo 2 explica los antecedentes de la presente tesis y el marco del proyecto en el que se ha desarrollado. El Capítulo 3 recoge el estado del arte. El Capítulo 4 establece los objetivos de esta tesis doctoral. Los resultados se dividen en cinco sub-secciones (dentro del Capítulo 5) que corresponden con los trabajos publicados bien en revistas revisadas por pares, bien en congresos internacionales o bien como capítulos de libros revisados por pares. La Sección 5.1. es un estudio del desarrollo de la vitrescencia en manzanas mediante MRI y lo relaciona con la posición de la fruta dentro de la copa del árbol. La Sección 5.2 presenta un trabajo sobre macro- y microestructura en modelos de alimentos. La Sección 5.3 es un artículo en revisión en una revista revisada por pares, en el que se hace un estudio microestrcutural no destructivo mediante relaxometría 2D T1/T2. la Sección 5.4, hace una comparación entre manzanas afectadas por vitrescencia mediante dos técnicas: tomografía de rayos X e MRI, en manzana. Por último, en la Sección 5.5 se muestra un trabajo en el que se hace un estudio de secuencias de MRI en línea para la evaluación de calidad interna en manzanas. Los siguientes capítulos ofrecen una discusión y conclusiones (Capítulo 6 y 7 respectivamente) de todos los capítulos de esta tesis doctoral. Finalmente, se han añadido tres apéndices: el primero con una introducción de los principios básicos de resonancia magnética nuclear (NMR) y en los otros dos, se presentan sendos estudios sobre el efecto de las fibras en la rehidratación de cereales de desayuno extrusionados, mediante diversas técnicas. Ambos trabajos se presentaron en un congreso internacional. Los resultados más relevantes de la presente tesis doctoral, se pueden dividir en tres grandes bloques: resultados sobre macroestructura, resultados sobre microestructura y resultados sobre MRI en línea. Resultados sobre macroestructura: - La imagen de resonancia magnética (MRI) se aplicó satisfactoriamente para la caracterización de macroestructura. En particular, la reconstrucción 3D de imágenes de resonancia magnética permitió identificar y caracterizar dos tipos distintos de vitrescencia en manzanas: central y radial, que se caracterizan por el porcentaje de daño y la conectividad (número de Euler). - La MRI proveía un mejor contraste para manzanas afectadas por vitrescencia que las imágenes de tomografía de rayos X (X-Ray CT), como se pudo verificar en muestras idénticas de manzana. Además, el tiempo de adquisición de la tomografía de rayos X fue alrededor de 12 veces mayor (25 minutos) que la adquisición de las imágenes de resonancia magnética (2 minutos 2 segundos). Resultados sobre microestructura: - Para el estudio de microestructura (nivel subcelular) se utilizaron con éxito secuencias de relaxometría 2D T1/T2. Estas secuencias se usaron por primera vez en alto campo y sobre piezas de alimento completo, convirtiéndose en una forma no destructiva de llevar a cabo estudios de microestructura. - El uso de MRI junto con relaxometría 2D T1/T2 permite realizar estudios multiescala en alimentos de forma no destructiva. Resultados sobre MRI en línea: - El uso de imagen de resonancia magnética en línea fue factible para la identificación de dos tipos de desórdenes internos en manzanas: vitrescencia y podredumbre interna. Las secuencias de imagen tipo FLASH resultaron adecuadas para la identificación en línea de vitrescencia en manzanas. Se realizó sin selección de corte, debido a que la vitrescencia puede desarrollarse en cualquier punto del volumen de la manzana. Se consiguió reducir el tiempo de adquisición, de modo que se llegaron a adquirir 1.3 frutos por segundos (758 ms por fruto). Las secuencias de imagen tipo UFLARE fueron adecuadas para la detección en línea de la podredumbre interna en manzanas. En este caso, se utilizó selección de corte, ya que se trata de un desorden que se suele localizar en la parte central del volumen de la manzana. Se consiguió reducir el tiempo de adquisicón hasta 0.67 frutos por segundo (1475 ms por fruto). En ambos casos (FLASH y UFLARE) fueron necesarios algoritmos para la corrección del movimiento de las imágenes en tiempo real. ABSTRACT Food is a complex system formed by several structures at different scales: macroscopic and microscopic. Many properties of foods that are relevant to process engineering or quality and postharvest treatments are related to their microstructure. This Ph.D Thesis proposes a complete methodology for food structure determination, in a multiscale way, based on the Nuclear Magnetic Resonance (NMR) phenomenon since NMR techniques are non-invasive and non-destructive, and allow both, macro- and micro-structure study. Different NMR procedures are used depending on the structure level under study. For the macrostructure level, Magnetic Resonance Imaging (MRI) revealed its usefulness for food characterization. For microstructure insight, MRI required high acquisition times, which is a hindrance for transference to industry applications. Therefore, optimization of NMR procedures based on T1/T2 relaxometry sequences was a key strategy in this Thesis. These NMR relaxometry protocols, are successfully implemented in high magnetic field. Microstructure of entire food products have been characterized for the first time using these protocols. Two different types of food products have been studied: food models and actual food (apples). Furthermore, as a first step for the food industry implementation, a grading line system, specially designed for working under NMR conditions in previous works of the LPF-TAGRALIA group, is improved. The study and selection of the most suitable rapid sequence to detect two different types of disorders in apples (watercore and internal breakdown) is performed and the real time image motion correction is applied. In addition, artificial vision protocols for the automatic classification of apples potentially affected by watercore are applied. This document is divided into seven different chapters: Chapter 2 explains the thesis background and the framework of the project in which it has been worked. Chapter 3 comprises the state of the art. Chapter 4 establishes de objectives of this Ph.D thesis. The results are divided into five different sections (in Chapter 5) that correspond to published peered reviewed works. Section 5.1 assesses the watercore development in apples with MRI and studies the effect of fruit location in the canopy. Section 5.2 is an MRI and 2D relaxometry study for macro- and microstructure assessment in food models. Section 5.3 is a non-destructive microstructural study using 2D T1/T2 relaxometry on watercore affected apples. Section 5.4 makes a comparison of X-ray CT and MRI on watercore disorder of different apple cultivars. Section 5.5, that is a study of online MRI sequences for the evaluation of apple internal quality. The subsequent chapters offer a general discussion and conclusions (Chapter 6 and Chapter 7 respectively) of all the works performed in the frame of this Ph.D thesis (two peer reviewed journals, one book chapter and one international congress).Finally, three appendices are included in which an introduction to NMR principles is offered and two published proceedings regarding the effect of fiber on the rehydration of extruded breakfast cereal are displayed. The most relevant results can be summarized into three sections: results on macrostructure, results on microstructure and results on on-line MRI. Results on macrostructure: - MRI was successfully used for macrostructure characterization. Indeed, 3D reconstruction of MRI in apples allows to identify two different types of watercore (radial and block), which are characterized by the percentage of damage and the connectivity (Euler number). - MRI provides better contrast for watercore than X-Ray CT as verified on identical samples. Furthermore, X-Ray CT images acquisition time was around 12 times higher (25 minutes) than MRI acquisition time (2 minutes 2 seconds). Results on microstructure: - 2D T1/T2 relaxometry were successfully applied for microstructure (subcellular level) characterization. 2D T1/T2 relaxometry sequences have been applied for the first time on high field for entire food pieces, being a non-destructive way to achieve microstructure study. - The use of MRI together with 2D T1/T2 relaxometry sequences allows a non-destructive multiscale study of food. Results on on-line MRI: - The use of on-line MRI was successful for the identification of two different internal disorders in apples: watercore and internal breakdown. FLASH imaging was a suitable technique for the on-line detection of watercore disorder in apples, with no slice selection, since watercore is a physiological disorder that may be developed anywhere in the apple volume. 1.3 fruits were imaged per second (768 ms per fruit). UFLARE imaging is a suitable sequence for the on-line detection of internal breakdown disorder in apples. Slice selection was used, as internal breakdown is usually located in the central slice of the apple volume. 0.67 fruits were imaged per second (1475 ms per fruit). In both cases (FLASH and UFLARE) motion correction was performed in real time, during the acquisition of the images.
Resumo:
Two experiments were conducted to estimate the standardized ileal digestible (SID) Trp:Lys ratio requirement for growth performance of nursery pigs. Experimental diets were formulated to ensure that lysine was the second limiting AA throughout the experiments. In Exp. 1 (6 to 10 kg BW), 255 nursery pigs (PIC 327 × 1050, initially 6.3 ± 0.15 kg, mean ± SD) arranged in pens of 6 or 7 pigs were blocked by pen weight and assigned to experimental diets (7 pens/diet) consisting of SID Trp:Lys ratios of 14.7%, 16.5%, 18.4%, 20.3%, 22.1%, and 24.0% for 14 d with 1.30% SID Lys. In Exp. 2 (11 to 20 kg BW), 1,088 pigs (PIC 337 × 1050, initially 11.2 kg ± 1.35 BW, mean ± SD) arranged in pens of 24 to 27 pigs were blocked by average pig weight and assigned to experimental diets (6 pens/diet) consisting of SID Trp:Lys ratios of 14.5%, 16.5%, 18.0%, 19.5%, 21.0%, 22.5%, and 24.5% for 21 d with 30% dried distillers grains with solubles and 0.97% SID Lys. Each experiment was analyzed using general linear mixed models with heterogeneous residual variances. Competing heteroskedastic models included broken-line linear (BLL), broken-line quadratic (BLQ), and quadratic polynomial (QP). For each response, the best-fitting model was selected using Bayesian information criterion. In Exp. 1 (6 to 10 kg BW), increasing SID Trp:Lys ratio linearly increased (P < 0.05) ADG and G:F. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 23.9% (95% confidence interval [CI]: [<14.7%, >24.0%]) SID Trp:Lys ratio. For G:F, the best-fitting model was a BLL in which the maximum G:F was estimated at 20.4% (95% CI: [14.3%, 26.5%]) SID Trp:Lys. In Exp. 2 (11 to 20 kg BW), increasing SID Trp:Lys ratio increased (P < 0.05) ADG and G:F in a quadratic manner. For ADG, the best-fitting model was a QP in which the maximum ADG was estimated at 21.2% (95% CI: [20.5%, 21.9%]) SID Trp:Lys. For G:F, BLL and BLQ models had comparable fit and estimated SID Trp:Lys requirements at 16.6% (95% CI: [16.0%, 17.3%]) and 17.1% (95% CI: [16.6%, 17.7%]), respectively. In conclusion, the estimated SID Trp:Lys requirement in Exp. 1 ranged from 20.4% for maximum G:F to 23.9% for maximum ADG, whereas in Exp. 2 it ranged from 16.6% for maximum G:F to 21.2% for maximum ADG. These results suggest that standard NRC (2012) recommendations may underestimate the SID Trp:Lys requirement for nursery pigs from 11 to 20 kg BW.
Resumo:
The effects of the inclusion of raw glycerin (GLYC) and lecithin in the diet on egg production,egg quality and total tract apparent retention (TTAR) of dietary components was studied inbrown egg-laying hens from 23 to 51 wk of age. The experimental design was completelyrandomized with six diets combined as a 2 × 3 factorial with two levels of GLYC (0 vs.70 g/kg) and three animal fat to lecithin ratios (40:0, 20:20 and 0:40 g/kg). Each treatmentwas replicated eight times and the experimental unit was a cage with ten hens. Productionwas recorded by replicate every 28-d period and cumulatively. For the entire experiment,the inclusion of GLYC in the diet hindered feed conversion ratio per kilogram of eggs (2.071vs. 2.039; P < 0.05) but did not affect any of the other production or egg quality traits studied.The replacement of animal fat by lecithin (40:0, 20:20 and 0:40 g/kg) increased egg weight(60.1, 60.7 and 61.8 g, respectively; P < 0.001) and egg mass production (56.8, 57.5 and58.8 g/d, respectively; P < 0.01) and improved yolk color as measured by the DSM colorfan (9.2, 9.2 and 9.5, respectively; P < 0.001) and feed conversion ratio per kilogram of eggs(2.072, 2.068 and 2.027, respectively; P < 0.05). Feed intake, egg production and body weightgain, however, were not affected. The inclusion of GLYC in the diet did not affect nutrientretention but lecithin inclusion improved TTAR of dry matter (P < 0.05), organic matter(P < 0.05), ether extract (P < 0.001) and gross energy (P < 0.001). In summary, the inclusionof 70 g glycerol/kg diet hindered feed conversion ratio per kilogram of eggs but did notaffect any other production or digestibility trait. The replacement of animal fat by lecithinimproved egg weight, egg yolk color and nutrient digestibility. Consequently, lecithin canbe used as a lipid source in laying hen diets with beneficial effects on egg production
Resumo:
Global biogeochemical models have improved dramatically in the last decade in their representation of the biosphere. Although leaf area data are an important input to such models and are readily available globally, global root distributions for modeling water and nutrient uptake and carbon cycling have not been available. This analysis provides global distributions for fine root biomass, length, and surface area with depth in the soil, and global estimates of nutrient pools in fine roots. Calculated root surface area is almost always greater than leaf area, more than an order of magnitude so in grasslands. The average C:N:P ratio in living fine roots is 450:11:1, and global fine root carbon is more than 5% of all carbon contained in the atmosphere. Assuming conservatively that fine roots turn over once per year, they represent 33% of global annual net primary productivity.
Resumo:
The multicellular obligately photoautotrophic alga Volvox is composed of only two types of cells, somatic and reproductive. Therefore, Volvox provides the simplest model system for the study of multicellularity. Metabolic labeling experiments using radioactive precursors are crucial for the detection of stage- and cell-type-specific proteins, glycoproteins, lipids, and carbohydrates. However, wild-type Volvox lacks import systems for sugars or amino acids. To circumvent this problem, the hexose/H+ symporter (HUP1) gene from the unicellular alga Chlorella was placed under the control of the constitutive Volvox beta-tubulin promoter. The corresponding transgenic Volvox strain synthesized the sugar transporter in a functional state and was able to efficiently incorporate 14C from labeled glucose or glucosamine. Sensitivity toward the toxic glucose/mannose analogue 2-deoxy-glucose increased by orders of magnitude in transformants. Thus we report the successful transformation of Volvox with a gene of heterologous origin. The chimeric gene may be selected for in either a positive or a negative manner, because transformants exhibit both prolonged survival in the dark in the presence of glucose and greatly increased sensitivity to the toxic sugar 2-deoxyglucose. The former trait may make the gene useful as a dominant selectable marker for use in transformation studies, whereas the latter trait may make it useful in development of a gene-targeting system.
Resumo:
We have used the green fluorescent protein (GFP) from the jellyfish Aequorea victoria as a vital marker/reporter in Drosophila melanogaster. Transgenic flies were generated in which GFP was expressed under the transcriptional control of the yeast upstream activating sequence that is recognized by GAL4. These flies were crossed to several GAL4 enhancer trap lines, and expression of GFP was monitored in a variety of tissues during development using confocal microscopy. Here, we show that GFP could be detected in freshly dissected ovaries, imaginal discs, and the larval nervous system without prior fixation or the addition of substrates or antibodies. We also show that expression of GFP could be monitored in intact living embryos and larvae and in cultured egg chambers, allowing us to visualize dynamic changes in gene expression during real time.
Resumo:
Background To evaluate the intraocular lens (IOL) position by analyzing the postoperative axis of internal astigmatism as well as the higher-order aberration (HOA) profile after cataract surgery following the implantation of a diffractive multifocal toric IOL. Methods Prospective study including 51 eyes with corneal astigmatism of 1.25D or higher of 29 patients with ages ranging between 20 and 61 years old. All cases underwent uneventful cataract surgery with implantation of the AT LISA 909 M toric IOL (Zeiss). Visual, refractive and corneal topograpy changes were evaluated during a 12-month follow-up. In addition, the axis of internal astigmatism as well as ocular, corneal, and internal HOA (5-mm pupil) were evaluated postoperatively by means of an integrated aberrometer (OPD Scan II, Nidek). Results A significant improvement in uncorrected distance and near visual acuities (p < 0.01) was found, which was consistent with a significant correction of manifest astigmatism (p < 0.01). No significant changes were observed in corneal astigmatism (p = 0.32). With regard to IOL alignment, the difference between the axes of postoperative internal and preoperative corneal astigmatisms was close to perpendicularity (12 months, 87.16° ± 7.14), without significant changes during the first 6 months (p ≥ 0.46). Small but significant changes were detected afterwards (p = 0.01). Additionally, this angular difference correlated with the postoperative magnitude of manifest cylinder (r = 0.31, p = 0.03). Minimal contribution of intraocular optics to the global magnitude of HOA was observed. Conclusions The diffractive multifocal toric IOL evaluated is able to provide a predictable astigmatic correction with apparent excellent levels of optical quality during the first year after implantation.